tìm tất cả các số thực x,y biết
x^2+y^2=128 và x^2-y^2=(căn y-căn x ).(x+y+2014)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le2\left(x+1+y+2\right)=36\)
\(\Rightarrow A\le6\)
\(A_{max}=6\) khi \(\left\{{}\begin{matrix}x=8\\y=7\end{matrix}\right.\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a.\)
Mà \(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)=a.\)
và \(\left(\sqrt{y^2+a}-y\right)\left(\sqrt{y^2+a}+y\right)=a.\)
từ 3 cái trên =>\(\hept{\begin{cases}y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\\x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\end{cases}}\)cộng 2 vế lại và thu gọn => 2( x+y) =0 => x+y =0
(x+√x2+a)(y+√y2+a)=a.(x+x2+a)(y+y2+a)=a.
Mà (x+√x2+a)(√x2+a−x)=a.(x+x2+a)(x2+a−x)=a.
Và (√y2+a−y)(√y2+a+y)=a.(y2+a−y)(y2+a+y)=a.
Từ 3 cái trên =>\hept{y+√y2+a=√x2+a−xx+√x2+a=√y2+a−y\hept{y+y2+a=x2+a−xx+x2+a=y2+a−ycộng 2 vế lại và thu gọn => 2( x+y) =0 => x + y = 0
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
\(\Leftrightarrow2x\sqrt{1-y^2}+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
\(\Leftrightarrow6-2x\sqrt{1-y^2}-2y\sqrt{2-z^2}-2z\sqrt{3-x^2}=0\)
\(\Leftrightarrow\left(x^2-2x\sqrt{1-y^2}+\left(1-y^2\right)\right)+\left(y^2-2y\sqrt{2-z^2}+\left(2-z^2\right)\right)+\left(z^2-2z\sqrt{3-x^2}+\left(3-x^2\right)\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
\(\Leftrightarrow x=\sqrt{1-y^2};y=\sqrt{2-z^2};z=\sqrt{3-x^2}\)
\(\Leftrightarrow x=1,y=0,z=\sqrt{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)
Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:
$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$
$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$
$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)
Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:
$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$
$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$
$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$