có bao nhiêu số tự nhiên có hau chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu chữ số hàng chục là 9 thì có 9 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.9=9 số.
Nếu chữ số hàng chục là 8 thì có 8 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.8=8 số.
Nếu chữ số hàng chục là 7 thì có 7 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.7=7 số.
... Nếu chữ số hàng chục là 1 thì có 1 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài(là 0).Theo quy tắc nhân có 1.1=1 số.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1+2+3+..+7+8+9=45
Chọn B.
+) Nếu chữ số hàng chục là 9 thì có 9 cách chọn chữ số hàng đơn vị thoả mãn đề bài cho
=> Ta có: 9 số
+) Nếu chữ số hàng chục là 8 thì có 8 cách chọn chữ số hàng đơn vị thoả mãn đề bài cho
=> Ta có: 8 số
.....................
+) Nếu chữ số hàng đơn vị là 1 thì có 1 cách chọn chữ số hàng đơn vị thoả mãn đề bài
=> Ta có: 1 số
Vậy từ các trường hợp trên ta có số các số tự nhiên có 2 chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1+2+3+...+7+8+9=45 số
Trong các số tự nhiên có 2 chữ số thì có 9 số có các chữ số giống nhau (là 11, 22, 33, 44, 55, 66, 77, 88, 99) (không thỏa đề bài) và 9 số có tận cùng là 0 (là 10, 20, 30, 40, 50, 60, 70, 80, 90) (thỏa mãn đề bài)
Xét trường hợp 2 chữ số trong số đó là khác nhau và không có chữ số nào là 0. Xét tập hợp \(A=\left\{1;2;...;9\right\}\). Vì chữ số hàng chục phải lớn hơn chữ số hàng đơn vị nên số các số thỏa mãn trường hợp này chính là số cách chọn 2 trong 9 phần tử của tập hợp A mà không tính thứ tự.
Trước hết, ta đi tính số cách chọn 2 phần tử của A mà có kể thứ tự. Gọi 2 phần tử chọn ra đó là \(a,b\). Khi đó \(a\) có 9 cách chọn còn \(b\) có 8 cách chọn nên số cách chọn 2 phần tử từ tập A là \(9.8=72\) (cách).
Bây giờ, ta đi tính số cách chọn 2 phần tử của A mà không kể thứ tự. Thế thì có tất cả \(\dfrac{72}{2}=36\) cách vì mỗi cách chọn \(\left(a,b\right)\) và \(\left(b,a\right)\) trong trường hợp trước tương ứng với 1 cách chọn \(\left(a,b\right)\) trong trường hợp này.
Như vậy, có tất cả là \(9+36=45\) số thỏa mãn đề bài.
Ta thấy từ 10-> 19 có 1 số
20 đến 29 có 2 số
30 đến 39 có 3 số
.....
90-> 99 có 9 số
=> có tất cả :1+2+3+4+...+9=45 ( số)
Vậy ...
số các số có chữ số hàng chục trùng với chữ số hàng đơn vị : 9 số ( tương ứng với 9 chữ số 1, 2,...., 9 )
nếu chữ số hàng chục là x thì số các số có hàng chục là x và có số hàng đơn vị nhỏ hơn cũng là x ( vì số các số tự nhiên liều trước của 1 số, kể cả số 0 bằng chính số đó )
vậy nên số các số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 ( số )
vậy có tất cả 45 tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị
số các số có chữ số hàng chục trùng với chữ số hàng đơn vị : 9 số ( tương ứng với 9 chữ số 1, 2,...., 9 )
nếu chữ số hàng chục là x thì số các số có hàng chục là x và có số hàng đơn vị nhỏ hơn cũng là x ( vì số các số tự nhiên liều trước của 1 số, kể cả số 0 bằng chính số đó )
vậy nên số các số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 ( số )
vậy có tất cả 45 tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị