K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

còn mik 45 phút nà !!!

1 tháng 8 2017

a

0

1

2

3

4

5

6

7

8

9

10

a3

0

1

8

27

64

125

216

343

512

729

1000

BẲNG LẬP PHƯƠNG Ở TRÊN

BẲNG BÌNH PHƯƠNG Ở DƯỚI

9 tháng 7 2017

bình phương là x2 nhe cu lay 02=0 cu the nhan len den 20 ban nhe 

23 tháng 8 2021

1) \(x-y=3\\ \Rightarrow\left(x-y\right)^2=3^2\\ \Rightarrow x^2-2xy+y^2=9\\ \Rightarrow\left(x^2+y^2\right)-2xy=9\\ \Rightarrow x^2+y^2=9+2xy\)

    \(\Rightarrow x^2+y^2=9-4\)(vì xy=-2)

    \(\Rightarrow x^2+y^2=5\)

 

23 tháng 8 2021

2) \(x-y=3\\ \Rightarrow\left(x-y\right)^3=27\\ \Rightarrow x^3-3x^2y+3xy^2-y^3=27\\ \Rightarrow\left(x^3-y^3\right)+6x-6y=27\\ \Rightarrow\left(x^3-y^3\right)+6\left(x-y\right)=27\\ \Rightarrow\left(x^3-y^3\right)+18=27\\ \Rightarrow x^3-y^3=9\)

19 tháng 7 2018

Đáp án B

Đề bài yêu cầu: thể hiện quy mô và cơ cấu, trong 2 năm: 1995 và 2004

Sử dụng kĩ năng nhận dạng biểu đồ: biểu đồ thích hợp nhất để thể hiện quy mô và cơ cấu xuất nhập khẩu của Hoa Kì trong năm 1995 và 2004 là: biểu đồ tròn.

24 tháng 2 2018

Đáp án B.

Giải thích: Dựa vào dấu hiệu nhận biết biểu đồ tròn => Biểu đồ thích hợp nhất để thể hiện quy mô và cơ cấu xuất nhập khẩu của Hoa Kì trong năm 1995 và 2004 là biểu đồ tròn.

28 tháng 2 2017

mốc thời gian và sự kiện ở cuối trang sách Sử 7 đó

28 tháng 2 2017

bn chụp r gửi cho mjnk đc k mjnk k có sách. bn cùng bàn mjnk cầm r

16 tháng 10 2016

a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 

b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7

k minh nha
Mà a^5 chia hết cho 5 => a chia hết cho 5

16 tháng 10 2016

Chứng minh

a) a5-a chia hết cho 5 

b) a​7-a chia hết cho 7

a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 

b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7
Mà a^5 chia hết cho 5 => a chia hết cho 5

nhé !