Tìm nghiệm nguyên dương của phương trình
\(\dfrac{2018}{x+y}+\dfrac{x}{y+2017}+\dfrac{y}{4035}+\dfrac{2017}{x+2018}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy–Schwarz ta được:
\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)
Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)
Vậy đẳng thức ko xảy ra hay \(x>y\)
Chứng minh Nesbit 4 số rồi áp dụng nhé
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+d\right)}+\frac{c^2}{c\left(d+a\right)}+\frac{d^2}{d\left(a+b\right)}\) (*)
Theo Cauchy - Schwarz dạng engel , ta có
(*) \(\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)
\(=\frac{2\left(a+c\right)\left(b+d\right)+\left(a+c\right)^2+\left(b+d\right)^2}{\left(a+c\right)\left(b+d\right)+2ac+2bd}\ge\frac{2\left(a+c\right)\left(b+d\right)+4ac+4bd}{\left(a+c\right)\left(b+d\right)+2ac+2bd}=2\)
Đẳng thức xảy ra <=> a = c và b = d
Áp dụng bất đẳng thức Nesbit cho 4 số ,ta có
\(\frac{2018}{x+y}+\frac{x}{y+2017}+\frac{y}{2017+2018}+\frac{2017}{x+2018}\ge2\)
Đẳng thức xảy ra <=> y = 2018 , x = 2017
\(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\Leftrightarrow\left(\dfrac{2-x}{2017}+1\right)=\left(\dfrac{1-x}{2018}+1\right)+\left(1-\dfrac{x}{2019}\right)\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{2019-x}{2018}+\dfrac{2019-x}{2019}\)\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
Ta đã có: \(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}< 0\)
Vậy ta dễ dàng suy ra được \(S=\left\{2019\right\}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{x+y+2017+y+z-2018+z+x+1}{z+x+y}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z};\dfrac{z+x+1}{y}=2\\ \Rightarrow\dfrac{2}{x+y+z}=2\\ \Rightarrow x+y+z=1\)
\(\left\{{}\begin{matrix}\dfrac{x+y+2017}{z}=2\\\dfrac{y+z-2018}{x}=2\\\dfrac{z+x+1}{y}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+2017=2z\\y+z-2018=2x\\z+x+1=2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z=3z-2017\\y+z+x=3x+2018\\z+x+y=3y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z-2017=1\\3x+2018=1\\3y-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z=2018\\3x=-2017\\3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{2018}{3}\\x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\\z=\dfrac{2018}{3}\end{matrix}\right.\)
\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)
\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)
\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)
Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy...
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)