K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

\(Q=x^2+\left(3-x\right)^2=\left[x+\left(3-x\right)\right]^2-2x\left(3-x\right)=3^2-2x\left(3-x\right)\)

đặt : t=2x.(3-x) => Q=9- t

\(Q\ge0\Rightarrow9-t\ge5\Rightarrow t\le4\)(*)

\(P=\left[x^2+\left(3-x\right)^2\right]^2+4x^2\left(3-x\right)^2=\left(9-t\right)^2+t^2\)

\(P=2t^2-18t+9^2=2\left(t^2-9.t\right)+9^2\)

\(P=2\left(t^2-2.\dfrac{9}{2}t+\dfrac{9^2}{4}\right)+9^2-\dfrac{9^2}{2}=2\left(t-\dfrac{9}{2}\right)^2+\dfrac{9^2}{2}\)

từ (*)

\(t\le4\Rightarrow\left(t-\dfrac{9}{2}\right)\le4-\dfrac{9}{2}=\dfrac{-1}{2}\Rightarrow\left(t-\dfrac{9}{2}\right)^2\ge\dfrac{1}{4}\)

\(P\ge2.\dfrac{1}{4}+\dfrac{9^2}{2}=\dfrac{1}{2}+\dfrac{81}{2}=\dfrac{82}{2}=41\)

đẳng thức khi t =4 <=> 2x(3-x) =4

<=>x^2 -3x =-2 <=>x^2 -3x+2=0 <=>x^2 -2x -(x-2)

<=>(x-1)(x-2) =0=>x={1;2}

AH
Akai Haruma
Giáo viên
24 tháng 2 2018

Lời giải:

Đặt \(\left\{\begin{matrix} x=a\\ 3-x=b\end{matrix}\right.\). Theo điều kiện đb ta có: \(\left\{\begin{matrix} a+b=3\\ a^2+b^2\geq 5\end{matrix}\right.\)

\(\Rightarrow (a+b)^2-2ab\geq 5\Leftrightarrow 9-2ab\geq 5\)

\(\Leftrightarrow ab\leq 2\)

Ta có:

\(P=x^4+(3-x)^4+6x^2(3-x)^2\)

\(P=a^4+b^4+6a^2b^2=(a^2+b^2)^2+4a^2b^2\)

\(P=[(a+b)^2-2ab]^2+4a^2b^2=(9-2ab)^2+4a^2b^2\)

\(P=81+8a^2b^2-36ab=8(ab-2)^2-4ab+49\)

Ta có: \(\left\{\begin{matrix} (ab-2)^2\geq 0\\ ab\leq 2\end{matrix}\right.\) nên \(P\geq 0-4.2+49\Leftrightarrow P\geq 41\)

Vậy \(P_{\min}=41\)

Dấu bằng xảy ra khi \(ab=2\Leftrightarrow \text{x=2 or x=1}\)

22 tháng 5 2020

Đặt \(t=x^2+\left(3-x\right)^2\Rightarrow t\ge5\)

Mặt khác: \(t=x^2+\left(3-x\right)^2=9-2x\left(3-x\right)\Rightarrow x\left(3-x\right)=\frac{9-t}{2}\)

Ta có: \(P=\left[x^2+\left(3-x\right)^2\right]^2+4x^2\left(3-x\right)^2=t^2+4\left(\frac{9-t}{2}\right)^2\)

\(=2t^2-18t+81=2\left(t-\frac{9}{2}\right)^2+\frac{81}{2}\)

Mà \(t\ge5\Rightarrow t-\frac{9}{2}\ge\frac{1}{2}\Rightarrow P\ge2.\left(\frac{1}{2}\right)^2+\frac{81}{2}=41\)

Đẳng thức xảy ra khi \(t=5\Leftrightarrow x^2+\left(3-x\right)^2=5\Leftrightarrow x^2-3x+2\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy \(MinP=41\), đạt được khi \(x\in\left\{1;2\right\}\)

phải là tìm giá trị lớn nhất chứ

14 tháng 10 2017

Đặt \(x^2+\left(3-x\right)^2=a\ge5\)

Ta có: 

\(x\left(3-x\right)=-\frac{1}{2}\left(2x^2-6x\right)\)

\(=-\frac{1}{2}\left(x^2-6x+9+x^2-9\right)\)

\(=-\frac{1}{2}\left(x^2+\left(3-x\right)^2-9\right)=-\frac{1}{2}\left(a-9\right)\)

Áp dụng ta có: 

\(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2=\left(x^2+\left(3-x\right)^2\right)^2+4x^2\left(3-x\right)^2\)

\(=a^2+\left(a-9\right)^2\)

\(=2a^2-18a+81=\left(2a^2-20a+50\right)+2a+31\)

\(=2\left(a-5\right)^2+2a+31\ge0+2.5+31=41\)

27 tháng 5 2016

Đặt \(y=3-x\).Ta có:\(\hept{\begin{cases}x+y=3\\x^2+y^2\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2+2xy=9\\x^2+y^2\ge5\end{cases}}}\)

\(\Rightarrow x^2+y^2+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)

\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)

Mặt khác \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\left(1\right)\)

Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\):

\(\Rightarrow41\left[\left(x^2+y^2\right)^2+\left(2xy\right)^2\right]\ge\left[5\left(x^2+y^2\right)+4\left(2xy\right)^2\right]\ge41\)

hay \(\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)

Vậy minP=41

27 tháng 5 2016

You ơi , you thiếu điều kiện xảy ra dấu "="

18 tháng 3 2023

\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)

\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)

\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A\le1\)

Dấu "=" xảy ra khi x=y=1.

Vậy MaxA là 1, đạt được khi x=y=1.

 

 

19 tháng 3 2023

Thanks!

NV
14 tháng 2 2022

Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)

\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)

\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)

4 tháng 8 2020

ĐK: \(0\le x,y,z\le2\)\(x+y+z=3\)

Đặt \(a=x-1\),\(b=y-1\),\(c=z-1\)

\(-1\le a,b,c\le1\)và \(a+b+c=0\)

Khi đó:

\(M=\left(a+1\right)^4+\left(b+1\right)^4+\left(c+1\right)^4-12abc\)

     \(=a^4+b^4+c^4+4.\left(a^3+b^3+c^3\right)+6.\left(a^2+b^2+c^2\right)+4.\left(a+b+c\right)-3-12abc\)

Vì     \(a+b+c=0\)nên

\(a^3+b^3+c^3-3abc=\left(a+b+c\right),\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Do đó 

\(M=a^4+b^4+c^4+6.\left(a^2+b^2+c^2\right)+3\ge3\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=0\)hay \(x=y=z=1\)

Từ đó suy ra giá trị nhỏ nhất của M bằng 3 

4 tháng 8 2020

vì sao 0<=x,y,z <=2

30 tháng 7 2020

Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)

Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)

Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:

\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)

\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)

\(\Rightarrow A\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

12 tháng 8 2017

Bài này t làm rồi, "nhẹ" không ấy mà :|

Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)

BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0