K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

15 tháng 3 2017

\(C=\frac{2\left(x-1\right)^2+1}{x^2-2x+3}=\frac{2\left(x-1\right)^2+1}{\left(x^2-2x+1\right)+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=\frac{2\left[\left(x-1\right)^2+2\right]-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

Để \(2-\frac{3}{\left(x-1\right)^2+2}\) đạt GTNN <=> \(\left(x-1\right)^2+2\)đạt GTNN 

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\) có GTNN là 2 tại x = 1

\(\Rightarrow B_{min}=2-\frac{3}{\left(1-1\right)^2+2}=\frac{1}{2}\) tại \(x=1\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

26 tháng 7 2015

để A nhỏ nhất <=>\(x^2+2x+3\)nhỏ nhất (vi (\(\left(x+2\right)^2\)\(\ge\) 0 )

                       A = \(x^2+2x+1+2\)

                <=> A =\(\left(x+1\right)^2+2\)

vì \(\left(x+1\right)^2\)\(\ge\)o

nên \(\left(x+1\right)^2+2\ge2\)

<=>A \(\ge2\)

đấu = xảy ra <=>x+1=0

                   <=>x=-1

vậy min A =2 <=>x=-1

 

26 tháng 11 2015

Ta có:

\(2A=\frac{2x^2+4x+6}{\left(x+2\right)^2}=\frac{\left(x^2+4x+4\right)+x^2+2}{\left(x+2\right)^2}=1+\frac{x^2+2}{\left(x+2\right)^2}\)

Đặt  \(B=\frac{x^2+2}{\left(x+2\right)^2}\)  và  \(y=x+2\Leftrightarrow x=y-2\) 

Vì  \(A\) đạt giá trị nhỏ nhất  \(\Leftrightarrow\) \(B\)  nhỏ nhất nên ta có:

\(B=\frac{\left(y-2\right)^2+2}{y^2}=\frac{y^2-4y+4+2}{y^2}=\frac{y^2-4y+6}{y^2}=1-\frac{4}{y}+\frac{6}{y^2}\)

\(B=\frac{1}{3}+\frac{2}{3}-\frac{4}{y}+\frac{6}{y^2}=\frac{1}{3}+\left(\sqrt{\frac{2}{3}}\right)^2-2.\sqrt{\frac{2}{3}.}\frac{\sqrt{6}}{y}+\left(\frac{\sqrt{6}}{y}\right)^2\)

\(B=\frac{1}{3}+\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2\ge\frac{1}{3}\) với mọi  \(y\)

Do đó:

\(2A=1+\frac{1}{3}+\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2\)

\(2A=\frac{4}{3}+\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2\ge\frac{4}{3}\) với mọi  \(y\)

\(\Rightarrow\)  \(A\ge\frac{2}{3}\)

Dấu  \(''=''\)  xảy ra   \(\Leftrightarrow\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2=0\)

                                \(\Leftrightarrow\sqrt{\frac{2}{3}}-\frac{\sqrt{6}}{y}=0\)

                               \(\Leftrightarrow y=3\)

                               \(\Leftrightarrow x=1\)

Vậy \(Min\)  \(A=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=1\)

 

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee