K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)

\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)

Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)

22 tháng 3 2019

1a) Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra \(a=b+m\) \(\left(m\ge0\right)\)

Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

          \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=\frac{b+m}{b+m}=1+\frac{b+m}{b+m}\)

           \(=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu \(=\Leftrightarrow m=0\Leftrightarrow a=b\))

Vậy tổng của một phân số dương với số nghịch đảo của nó lớn hơn hoặc bằng 2.

22 tháng 3 2019

a)Tham khảo:Câu hỏi của Yêu Chi Pu - Toán lớp 6 - Học toán với OnlineMath

b) \(P=\frac{3x}{y}+\frac{3y}{x}=3\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2=6\)

\(Q=3\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\ge3\left(2+2+2\right)=18\)

2 tháng 9 2019

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Và Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

2 tháng 3 2017

Giả sử phân số và nghịch đảo của nó là: \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên( a;b) cùng dấu hay a.b>0

Ta có:

\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó: \(\frac{a}{b}+\frac{b}{a}\ge2\)

10 tháng 6 2015

Giả sử phân số và nghịch đảo của nó là \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên \(a;b\)cùng dấu hay \(a.b>0\)

Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 2 2018

Đúng rùi

15 tháng 5 2017

Gọi phân số dương là \(\dfrac{a}{b}\) . ( Không mất tính tổng quát )

Cho \(a>0,\) \(b>0\)\(a\ge b\) . Ta có thể viết \(a=b+m\left(m\ge0\right)\) .

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}=1+\dfrac{m+b}{b+m}=2\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Dấu đẳng thức xảy ra khi \(a=b\left(m=0\right)\)

1 tháng 5 2018

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

14 tháng 3 2016

 Gọi phân số đó là a/b (ĐK: a,b # 0, a và b cùng dấu ) 
a/b + b/a ≥ 2 <=> (a² + b ²)/ab ≥ 2 
<=> a² - 2ab + b² ≥ 0 
<=> ( a – b )² ≥ 0 ( Luôn đúng với mọi a, b) 
=> Đpcm 

 

19 tháng 8 2016

mk giải đc nè, tick mk nha!!

Gọi phân số  dương là a/b. Ko mất tính tổng quát, giả sử như: a>0, b>0 và a  > b. Ta có thể viết a=b+m ( m > 0). Ta có:

a/b+b/a=b+m/b+b/m+b=1+m/b+b/b+m >  1+ m/b+m+b/b+m=1+m+b/b+m=2.

Vậy a/b+b/a > 2.