Cho a+b=x va ab=y. Tinh cac bieu thuc sau theo x va y
1, \(a^3\)- \(b^3\)
2, \(a^4\)- \(b^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có 7x=2y
Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)
Và x-y=16
Áp dụng công thức của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)
Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)
\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)
c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Mà a+2b-c=-20
Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)
Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)
\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)
\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)
Vậy a=-10,b=-15,c=-20
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
`a)` Thay `x=1;y=0` vào `A` có:
`A=(15:1+15xx1)+2009xx0`
`A=(15+15)+0=30`
`b)` Thay `x=1;y=0` vào `B` có:
`B=0:(119xx1+4512)+(756:1-0)`
`B=0+(756-0)=756`
THay `x=1;y=0` vào biểu thức `A` ta có :
`A=(15:1+15xx1)+2990xx0`
`A=(15xx1+15xx1)+2990xx0`
`A=(15xx2)+2990xx0`
`A=30+2990xx0`
`A=30+0=30`
Thay `x=1;y=0` vào biểu thức `B` ta có :
\(B=0:\left(119\times1+4512\right)+\left(756:1-0\right)\\ B=0:4631+756\\ B=0+756=756\)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
a: \(A=x^4y+x^2y^3+x^2y^3+y^5-x^4y-y^5\)
\(=2x^2y^3\)
b: \(=4x^2-y^2-100\)
\(=4\cdot\left(-25\right)^2-10^2-100\)
=400-200=200
a = 500 + x = 500 + 8075 = 8575
b = x - 500 = 8075 - 500 = 7575
a) Theo đầu bài ta có:
\(x+y=2\Rightarrow x=2-y\)
\(x^2+y^2=10\)
\(\Rightarrow\left(2-y\right)^2+y^2=10\)
\(\Rightarrow4+y^2-4y+y^2=10\)
\(\Rightarrow2y^2-4y=6\)
\(\Rightarrow2\left(y^2-2y\right)=6\)
\(\Rightarrow y\left(y-2\right)=3\)
Mà \(\hept{\begin{cases}y-\left(y-2\right)=2\\y+\left(y-2\right)=k\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}\\y-2=\frac{k-2}{2}\end{cases}}}\)( với k là hằng số )
\(\Rightarrow y\left(y-2\right)=\frac{k+2}{2}\cdot\frac{k-2}{2}\)
\(\Rightarrow\frac{\left(k+2\right)\left(k-2\right)}{4}=3\)
\(\Rightarrow k^2-4=12\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4;-4\)
- Nếu k = 4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=3\\x=2-y=-1\end{cases}\Rightarrow x^3+y^3=-1+27=26}\)
- Nếu k = -4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=-1\\x=2-y=3\end{cases}\Rightarrow x^3+y^3=27+-1=26}\)
Vậy x3 + y3 = 26
a, \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.13=26\)
vậy............
b, \(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\)
\(\Rightarrow xy=\frac{a^2-b}{2}\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
Vậy....
a) Ta có:
M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) - (15xy - 15xy) - (3y2 - 3y2) - 1
M = -1
=> Biểu thức M có giá trị ko phụ thuộc vào biến x,y
b) Ta có: S = 1 + x + x2 + x3 + x4 + x5
x.S = x(1 + x + x2 + x3 + x4 + x5)
x.S = x + x2 + x3 + x4 + x5 + x6
xS - S = (x + x2 + x3 + x4 + x5 + x6) - (1 + x + x2 + x3 + x4 + x5)
xS - S = x6 - 1 => đpcm
a) M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x.x + 3x.(-5y) + y.(-3y) + (-5x).(-3y) + (-3).x2 + (-3).x2 + (-3).(-y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) + (-15xy + 15xy) + (-3y2 + 3y2) - 1
M = 0 + 0 - 1
M = -1
Vậy: biểu thức không phụ thuộc vào x và y
Ta có : \(a+b=x\Rightarrow a^2+2ab+b^2=x^2\Rightarrow a^2+b^2=x^2-2y\)
\(\Rightarrow a^2+b^2-2ab=x^2-2y-2y=x^2-4y\Rightarrow\left(a-b\right)^2=x^2-4y\Rightarrow a-b=\sqrt{x^2-4y}\)
1 . \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)=\sqrt{x^2-4y}\left(x^2-2y+y\right)=\sqrt{x^2-4y}\left(x^2-y\right)\)
2 . \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=x\sqrt{x^2-4y}\left(x^2-2y\right)\)
a+b=x hay a-b=x vậy bạn