Tìm số nguyên tố P sao cho:
a,P+2 và P+4 cũng là số nguyên tố
b,P+10 và P+14 cũng là số nguyên tố
c,P+2 ,P+6 và P+8 cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hinh nhu may bai nay lop tren thi phai minh hoc lop 5 ma khong biet
Câu đó này khó đến cả mình không giải được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Với p=1
Ta có
p+2=1+2=3 (nguyên tố,thỏa mãn)
p+4=1+4=5 (thỏa mãn )
Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)
Với p=2
Ta có:
p+2=2+2=4 (loại)
=>Trường hợp p=2 (loại)
Với p=3
Ta có
p+2=3+2=5 (thỏa mãn)
p+4=3+4=7 (thỏa mãn)
=>Trường hợp p=3 (thỏa mãn)
Với p>3 thì p có dạng 3k+1 hoặc 3k+2
+,p=3k+1
thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)
+,p=3k+2
thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)
Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3
Các câu khác bn lm tương tự nha
Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều
a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố
nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2
với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số
với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số
Vậy p=3 thỏa mãn đề bài
các phần còn lại tương tự
a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2 (k thuộc N*)
Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số ( loại )
Vậy p = 3
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
a
,- Nếu P=2 P+2=2+2=4 ( chia hết cho 2 loại)
- Nếu P=3 P+2=3+2=5 (chon)
P+4=3+4=7 (chon)
- Nếu P>3 thì P = 3k+1;3k+2
Với P=3k+1 thì P+2=3k+1+2=3(k+1) ( chia hết cho 3 loại)
Với P=3k+2 thì P+4=3k+2+4=3(k+2) ( chia hết cho 3 loại)
Vậy P=3
b,
,- Nếu P=2 P+10=2+10=12 ( chia hết cho 2 loại)
- Nếu P=3 P+10=3+10=13 (chon)
P+14=3+14=17 (chon)
- Nếu P>3 thì P = 3k+1;3k+2
Với P=3k+1 thì P+14=3k+1+14=3(k+5) ( chia hết cho 3 loại)
Với P=3k+2 thì P+10=3k+2+10=3(k+4) ( chia hết cho 3 loại)
Vậy P=3
Bạn làm phần c như hai phần a,b