Cho \(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\).Chứng minh: A là một số TNhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số 2012 không chia hết cho 3 (vì tổng các chữ số của nó = 5 không chia hêt cho 3).
=> 20122013 cũng không chia hết cho 3.
Xét 3 số: 20122013 - 1, 20122013 , 20122013 + 1. Đây là ba số tự nhiên liên tiếp lơn hơn 3. => Trong 3 số liên tiếp bao giờ cũng có 1 số chia hết cho 3.
Vì số ở giữa (số 20122013) không chia hết cho 3 nên hai số còn lại phải có 1 số chia hết cho 3
=> Hai số còn lại không thể cùng là số nguyên tố được
Số 2012 không chia hết cho 3 (vì tổng các chữ số của nó = 5 không chia hêt cho 3).
=> 20122013 cũng không chia hết cho 3.
Xét 3 số: 20122013 - 1, 20122013 , 20122013 + 1. Đây là ba số tự nhiên liên tiếp lơn hơn 3. => Trong 3 số liên tiếp bao giờ cũng có 1 số chia hết cho 3.
Vì số ở giữa (số 20122013) không chia hết cho 3 nên hai số còn lại phải có 1 số chia hết cho 3
=> Hai số còn lại không thể cùng là số nguyên tố .
=>ĐPCM
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2012^2+\left(2012.2013\right)^2+2013^2}\)
\(=2012+2012.2013+2013\)
Vậy A là một số tự nhiên
P/s: Mình nghĩ thế, không chắc!
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{\left(2013-1\right)^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2.2013^2-2.2013+1+2012^2.2013^2}\)
\(=\sqrt{2.2013.\left(2013-1\right)+1+2012^2.2013^2}\)
\(=\sqrt{2012^2.2013^2+2.2013.2012+1}=\sqrt{\left(2012.2013+1\right)^2}=2012.2013+1\)
a.
\(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2=a^2+\left(a^2+a\right)^2+a^2+2a+1\)
\(=\left(a^2+a\right)^2+2\left(a^2+a\right)+1=\left(a^2+a+1\right)^2\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}=6\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=2\Rightarrow\dfrac{x}{y}=1\\x+\dfrac{1}{y}=-3\Rightarrow\dfrac{x}{y}=6\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}=1\end{matrix}\right.\) \(\Rightarrow...\)
Cho hình bình hành ABCD,cạnh AB=a.AD=b .Tính AC^2+BD^2 theo a và b
giúp em với ạ
Ta có :
\(A=\sqrt{2013^2+2013^2.2014^2+2014^2}\)
\(=\sqrt{\left(2013.2014\right)^2+2013.\left(2014-1\right)+\left(2013+1\right).2014}\)
\(=\sqrt{\left(2013.2014\right)^2+2013.2014-2013+2014+2014.2013}\)
\(=\sqrt{\left(2013.2014\right)^2+2.2013.2014.1+1^2}\)
\(=\sqrt{\left(2013.2014+1\right)^2}\)
\(=2013.2014+1\in N\)
Vậy ...
Ta có: \(A=\sqrt{2013^2+2013^2.2014^2+2014^2}\)
<=>\(A=\sqrt{\left(2014^2+2013^2-2.2013.3014\right)+2.2013.2014+\left(2013.2014\right)^2}\)
<=>\(A=\sqrt{\left(2014-2013\right)^2+2.2013.2014+\left(2013.2014\right)^2}\)
<=>\(A=\sqrt{1+2.2013.2014+\left(2013.2014\right)^2}\)
<=>\(A=\sqrt{\left(2013.2014+1\right)^2}\)
<=>A=2013.2014+1
<=>A=4054183
Vậy A là số tự nhiên
Ta có:5a+3b và 13a+8b chia hết cho 2012
=>2(13a+8b)-5(5a+3b) chia hết cho 2012
=>26a+16b-25a-15b chia hết cho 2012
=>a+b chia hết cho 2012
=>8a+8b chia hết cho 2012
=>(13a+8b)-(8a+8b) chia hết cho 2012
=>5a chia hết cho 2012
Mà (5,2012)=1
=>a chia hết cho 2012
Mặt khác a+b chia hết cho 2012
=>b chia hết cho 2012
Vậy a và b chia hết cho 2012(đpcm)
5a +3b chia hết cho 2012=>8 ."5a +3b"chia hết cho 2012 =>40a +24b chia hết cho 2012
13a +8b chia hết cho 2012=>3 "13a+8b" chia hết cho 2012=>39a+24b chia hết cho 2012
=>40a +24b- "39a+24b" chia hết cho 2012+> a chia hết cho 2012
5a +3b chia hết cho 2012=>13"5a+3b' chia hết cho 2012 =>65a+39b chia hết cho 2012
13a+8b chia hết cho 2012 =>5"13a+8b"chia hết cho 2012=>65a+40b chia hết cho 2012
=> 65a +40b - "65a+39b"chia hết cho 2012=>b chia hết cho 2012
Vậy .....
\(A=10^{2012}+10^{2011}+10^{2009}+8\)
\(A=10^{2009}\left(10^3+10^2+10^1+8\right)\)
\(A=10^{2009}.1111+8\)
\(A=11110.....8\)( 2009 c/s 0 )
Không có số chính phương nào có tận cùng là 8
\(\Rightarrow\) A không phải là số chính phương.
A có ba chữ số tận cùng là 008 nên \(A⋮8\) ( 1 )
A có tổng các chữ số là 9 nên \(A⋮3\) ( 2 )
Từ (1)(2) kết hợp với ( 3,8 )=1 \(\Rightarrow A⋮24\)
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\Rightarrow A^2=2012^2+2012^2.2013^2+2013^2=2012^2.2013^2+\left(2013-1\right)^2+2013^2=\left(2012.2013\right)^2+2013^2-2.2013+1+2013=\left(2012.2013\right)^2+2.2013^2-2.2013+1=\left(2012.2013\right)^2+2.2013\left(2013-1\right)+1=\left(2012.2013\right)^2+2.2012.2013.1+1=\left(2012.2013+1\right)^2\Rightarrow A=2012.2013+1\)Vậy A là một số tự nhiên