K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHB vuông tại H có sin B=AH/AB

nên \(AB=3:sin40=4.67\left(cm\right)\)

=>\(BH=\sqrt{4.67^2-3^2}=3.58\left(cm\right)\)

\(BC=\dfrac{4.67^2}{3.58}=6.09\left(cm\right)\)

\(CH=BC-BH=6.09-3.58=2.51\left(cm\right)\)

24 tháng 1 2018

a) Ta có: tam giác ABC vuông tại A suy ra góc BAC=90  hay BAD=90
Có: DH vuông góc BC=>DHB= 90
Lại có: BD là đường phân giác của góc BAC=>góc ABD=góc HBD 
Suy ra tam giác ABD= tam giác HBD (cạnh huyền-góc nhọn)
Suy ra BA=BH (điều phải chứng minh)

NV
10 tháng 7 2021

Áp dụng định lý Pitago: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

Hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=7,2\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\)

\(CH=BC-BH=9,6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BDb) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BDBÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘBÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG...
Đọc tiếp

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BD

b) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BD



BÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘ


BÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNH



BÀI 4: CHO TAM GIÁC ABC VUÔNG TẠI A ( AC > AB), ĐƯỜNG CAO AH. TRÊN TIA HC LẤY HD = HA, ĐƯỜNG VUÔNG GÓC VỚI BC TẠI D CẮT AC TẠI E.

a) CHỨNG MINH AE = AB

b) GỌI M LÀ TRUNG ĐIỂM BE . TÍNH GÓC AHM


BÀI 5: TỨ GIÁC ABCD CÓ CÓ GÓC A = GÓC B =90 ĐỘ VÀ AC = BD.

a) ABCD CÓ PHẢI LÀ HÌNH CHỮ NHẬT KHÔNG? C/M

b) LẤY ĐIỂM M NẰM GIỮA A,C. VẼ MK VUÔNG GÓC AB TẠI K , MH VUÔNG GÓC AD TẠI H. CHỨNG MINH HK // BD

C) TIA MH CẮT BC Ở E, TIA KM CẮT CD TẠI F. MD CẮT HF Ở I, MB CẮT KE TẠI J/ CHỨNG MINH HK + EF = 2IJ

2
12 tháng 10 2016

ai lam thi lam di 

22 tháng 12 2021

em thi

21 tháng 7 2017

A B C H

ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)

ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\) 

                           \(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)

     \(\Rightarrow CH=3,2\) (do BH>0)

\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)

\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)

ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)