Trong hệ tọa độ Oxy cho A (1, -1), B (3, 2). Tìm điểm M trên trục Oy sao cho MA2 +MB2 nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M ∈ O y nên M(0; m) và M A → = 1 ; − 1 − m M B → = 3 ; 2 − m .
Khi đó M A 2 + M B 2 = M A → 2 + M B → 2 = 1 2 + − 1 − m 2 + 3 2 + 2 − m 2 = 2 m 2 − 2 m + 15.
= 2 m − 1 2 2 + 29 2 ≥ 29 2 ; ∀ m ∈ ℝ .
Suy ra M A 2 + M B 2 min = 29 2 .
Dấu = xảy ra khi và chỉ khi m = 1 2 ⇒ M 0 ; 1 2 .
Chọn C.
M thuộc trục tung nên tung độ y bằng 0
\(\Rightarrow M\left(a;0\right)\)
Ta có P= \(MA^2+MB^2=\sqrt{\left(1-a\right)^2+\left(-1\right)^2}^2+\sqrt{\left(3-a\right)^2+2^2}^2=2a^2-8a+15=2\left(a-2\right)^2+7\ge7\)
\(\Rightarrow\) MinP=7 đạt được khi a=2
khi đó M(2;0)
Chọn A
Phương pháp:
+) Xác định điểm I thỏa mãn I A → + I B → - I C → = 0 →
+) Khi đó
nhỏ nhất khi và chỉ khi MI ngắn nhất ⇔ M là hình chiếu vuông góc của I lên (Oxy) .
Cách giải:
Chọn C
Gọi I là trung điểm của AB
Suy ra: MA2 + MB2 đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=>M là hình chiếu của I trên trục Oz => M (0 ; 0 ; 3)
Đáp án D.
Gọi G là trọng tâm của tam giác ABC, ta có G(2;1;0)
Ta có:
Từ hệ thức trên ta suy ra: M A 2 + M B 2 + M C 2 đạt GTNN
⇔ MG đạt GTNN ⇔ M là hình chiếu vuông góc của G trên (P)
Gọi (d) là đường thẳng qua G và vuông góc với (P) thì (d) có phương trình tham số là
Tọa độ điểm M là nghiệm của hệ phương trình:
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+1\right)\\\overrightarrow{BM}=\left(-3;m-2\right)\end{matrix}\right.\)
\(T=AM^2+BM^2=1+\left(m+1\right)^2+9+\left(m-2\right)^2\)
\(=10+m^2+2m+1+m^2-4m+4\)
\(=2m^2-2m+15=2\left(m-\frac{1}{2}\right)^2+\frac{29}{2}\ge\frac{29}{2}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\) hay \(M\left(0;\frac{1}{2}\right)\)