tìm n thuộc N biết:
a)54=n b)n3=125 c)10n=1000 d)33=243 e)n4=81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^5=x\Rightarrow x=243\)
b) \(x^4=16\Rightarrow x^4=2^4\Rightarrow x=2\)
c) \(4^n=64\Rightarrow4^n=4^3\Rightarrow n=3\)
\(5^4=n\Rightarrow n=625\)
\(n^3=125\Rightarrow n^3=5^3\Rightarrow n=5\)
\(11^n=1313\Rightarrow11^n=11.121\Rightarrow11^{n-1}=121\Rightarrow11^{n-1}=11^2\Rightarrow n-1=11\Rightarrow n=12\)
1)
a)
Để tìm x trong phương trình 3^5 = x, ta thực hiện phép tính 3^5 = 3 * 3 * 3 * 3 * 3 = 243. Vậy x = 243.
b)
Để tìm x trong phương trình x^4 = 16, ta thực hiện phép tính căn bậc 4 của cả hai vế phương trình: √(x^4) = √16. Khi đó, ta được x = ±2.
c)
Để tìm n trong phương trình 4^n = 64, ta thực hiện phép tính logarit cơ số 4 của cả hai vế phương trình: log4(4^n) = log4(64). Khi đó, ta được n = 3.
2) a)
Để tìm n trong phương trình 5^4 = N, ta thực hiện phép tính 5^4 = 5 * 5 * 5 * 5 = 625. Vậy N = 625.
b)
Để tìm n trong phương trình n^3 = 125, ta thực hiện phép tính căn bậc 3 của cả hai vế phương trình: ∛(n^3) = ∛125. Khi đó, ta được n = 5.
c)
Để tìm n trong phương trình 11^n = 1331, ta thực hiện phép tính logarit cơ số 11 của cả hai vế phương trình: log11(11^n) = log11(1331). Khi đó, ta được n = 3.
a) 5^3 = 125
b)3^4.3^3=3^7
c)27.3^2=243
d)49.7^2=2401
e) chịu -_-
a)
(2x-1)4 = 34
=>2x-1 = 3
2x = 3+1
2x = 4
x = 2
b)
(3x-1)3 = 53
=> 3x-1 = 5
3x = 5+1
3x = 6
x = 2
c)
4x-1 . 42 = 45
4x-1 = 45 : 42
4x-1 = 43
=> x-1 = 3
x= 4
d)
3.34 nhỏ hơn hoặc bằng 32x nhỏ hơn hoặc bằng 33 . 35
35 nhỏ hơn hoặc bằng 32x nhỏ hơn hoặc bằng 38
=> 2x = 5 ; 6 ;7; 8
Nếu 2x = 5 thì x = 5:2 (loại)
Nếu 2x = 6 thì x = 3 ( thỏa mãn )
Nếu 2x = 7 thì x = 7: 2 ( loại)
Nếu 2x = 8 thì x = 4 ( thỏa mãn )
=> x= 3:4
a) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
vay \(x=2\)
b) \(\left(3x-1\right)^3=125\)
\(\left(3x-1\right)^3=5^3\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
vay \(x=2\)
c) \(4^{x-1}.16=1024\)
\(4^{x-1}=\frac{1024}{16}\)
\(4^{x-1}=64\)
\(4^{x-1}=4^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
vay \(x=4\)
d) \(3.81\le9^x\le27.243\)
\(3.3^4\le9^x\le3^3.3^5\)
\(3^5\le3^{2x}\le3^8\)
\(\Rightarrow5\le2x\le8\)
\(\Rightarrow\orbr{\begin{cases}2x\le8\\2x\ge5\end{cases}}\Rightarrow\orbr{\begin{cases}x\le4\\x\ge\frac{5}{2}\end{cases}}\Rightarrow\frac{5}{2}\le x\le8\)
vay \(\frac{5}{2}\le x\le8\)
a)27n:3n=9
(27:3)n=9
9n=91
n=1
Vậy n=1
b)\(\left(\frac{25}{5}\right)^n=5\)
\(5^n=5^1\)
n=1
Vạy n=1
c)\(\left(-\frac{81}{3}\right)^n=-243\)
\(\left(-27\right)^n=\left(-3\right)^5\)
\(\left[\left(-3\right)^3\right]^n=\left(-3\right)^5\)
\(\left(-3\right)^{3n}=\left(-3\right)^5\)
\(3n=5\)
\(n=\frac{5}{3}\)
Vậy \(n=\frac{5}{3}\)
d)\(\frac{1}{2}.2^n+4.2^n=9.5^n\)
\(2^n.\left(\frac{1}{2}+4\right)=9.5^n\)
\(2^n.\frac{9}{2}=3^2.5^n\)
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
2)
a) 3200=(32)100=9100
2300=(23)100=8100
b) 1255= (53)5 = 515
257=(52)7= 514
c) 920=(32)20=340
2713=(33)13=339
d) 1030=(103)10=10003
2100=(210)10=102410
e) 354=(32)27=927
281=(23)27=827
1. a)273.3n=2434
39 . 3n = 320
3n = 311
n = 11
b) 642.4n=165
46 . 4n = 410
4n = 44
n = 4
c)93<3n<812
36<3n<38
6<n<8
n = 7
25<5n\(\le\) 125
52<5n\(\le\)53
2<n\(\le\)3
n = 3
2. a)3200 và 2300 = 32.100 và 23.100 = (32)100 và (23)100 9100 và 8100
Vậy 9100 > 8100 ( vì 9 > 8 ) nên 3200 > 2300
b) 1255 và 257 = 515 và 514
515 > 514 ( vì 15 > 14 ) nên 1255 > 257
c) 920 và 2713 = 340 và 339
340 > 339 ( vì 40 > 39 ) nên 920 > 2713
d) 1030 và 2100 = 103.10 và 210.10 = (103)10 và (210)10 = 100010 và 102410
100010 < 102410 ( 1000 < 1024 ) nên 1030 < 2100
e) 354 và 281 = 32.27 và 23.27 = (32)27 và (23)27 = 927 và 827
927 > 827 ( vì 9 > 8 ) nên 354 > 281
f) 541 và 62511 = 541 và 544
541 < 544 ( vì 41 < 44 ) nên 541 < 62511
a) 275 và 2433
Ta có :
275 = ( 33 )5 = 315
2433 = ( 35 )3 = 315
Vì 315 = 315 Nên 275 = 2433
b) 2300 và 3200
Ta có :
2300 = ( 23 )100 = 8100
3200 = ( 32 )100 = 9100
Vì 8100 < 9100 Nên 2300 < 3200
c) 1255 và 257
Ta có :
1255 = ( 53 )5 = 515
257 = ( 52 )7 = 514
Vì 515 > 514 Nên 1255 > 277
d) 920 và 2713
Ta có :
920 = ( 32 )20 = 340
2713 = ( 33 )13 = 339
Vì 340 > 339 Nên 920 > 2713
e) 354 và 281
Ta có :
354 = ( 32 )27 = 927
281 = ( 23 )27 = 827
Vì 927 > 827 Nên 354 > 281
g) 1030 và 2100
Ta có :
1030 = ( 103 )10 = 100010
2100 = ( 210 )10 = 102410
Vì 100010 < 102410 Nên 1030 < 2100
A/ 27^5 =243^3
B/2^300<3^200
C/125^5>25^7
D/9^20>27^13
E/3^54>2^81
G/10^30<2^100
a) n = 54
b) n = 5
c) n = 3
d) ko hiểu bạn ghi gì
e) n = 3
a) \(54=n\Rightarrow n=54\)
b)\(n^3=125\)
\(n^3=5^3\Rightarrow n=5\)
c) \(10^n=1000\)
\(10^n=10^3\Rightarrow n=3\)
d) \(33=243????\)
e)\(n^4=81\)
\(n^4=3^4\Rightarrow n=4\)
\(~HT~\)