Cho a+b+c=1/a+1/b+1/c=0,abc khác 0
Chứng minh (a^6+b^6+c^6)/(a^3+b^3+c^3)=abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)
DO \(a+b+c=0\)
=>\(a^3+b^3+c^3=3abc\)
DO \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=> \(ab+ac+bc=0\)
TA CÓ \(\left(a^3+b^3+c^3\right)^2\)
= \(a^6+b^6+c^6+2\left(a^3b^3+b^3c^3+a^3c^3\right)=9a^2b^2c^2\)
DO \(ab+ac+bc=0\)
=> \(a^3b^3+b^3c^3+a^3c^3=0\)
=> \(a^6+b^6+c^6=9a^2b^2c^2\)
=> \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{9a^2b^2c^2}{3abc}=3abc\)
Ta có\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) nên ab + bc + ca = 0. Kết hợp với a + b + c = 0 ta được a2 + b2 + c2 = 0.
Sử dụng phân tích: a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) trong điều kiện a + b + c = 0 và a2 + b2 + c2 = 0 ta được:
nên a3 + b3 + c3 = 3abc. (1)
và a6 + b6 + c6 = 3a2b2c2. (2)
từ (1) và (2) suy ra đpcm.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow ab+bc+ca=0\)
Mà \(\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2=0\)
Ta lại có:
\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{\left(a^6+b^6+c^6-3a^2b^2c^2\right)+3a^2b^2c^2}{\left(a^3+b^3+c^3-3abc\right)+3abc}\)
\(=\frac{\left(a^2+b^2+c^2\right)\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)+3a^2b^2c^2}{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}\)
\(=\frac{3a^2b^2c^2}{3abc}=abc\)
với x+y+z=0 thì \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0< =>\)x3 +y3 +z3 =3xyz
nếu đặt x=a2; y=b2 ;z=c2 thì ta cần có a2 +b2 +c2 =0 thì sẽ có a6 +b6 +c6 =3a2b2c2
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0< =>\frac{ab+bc+ca}{abc}=0< =>ab+bc+ca=0.\)
a+b+c=0 <=> (a+b+c)2 =0 <=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0< =>a^2+b^2+c^2=0.\)(chứng minh xong)