K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

sorry, mìh mới học lớp 7

Thế thì đừng trả lời 

30 tháng 10 2020

giúp em với


A


BCDFEOa, Vì tứ giác ABCD là hình hình hành

⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC{AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD{AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)

 học tốt ;-;

13 tháng 10 2019

Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath

22 tháng 10 2020

Cho hỏi câu c làm sao vậy ạ 

2 tháng 2 2016

Vẽ hình ra nhé

 

2 tháng 2 2016

vẽ hình ra mình giải cho

20 tháng 10 2020

Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD

AH
Akai Haruma
Giáo viên
13 tháng 8 2017

Lời giải:

Vì $ABCD$ là hình bình hành nên:

\(AB=DC,AD=BC\). Kết hợp với ĐKĐB suy ra:

\(\left\{\begin{matrix} DF=DC\\ BE=BC\end{matrix}\right.\). Do đó tam giác $DFC$ cân tại $D$ và tam giác $BCE$ cân tại $B$

Suy ra \(\left\{\begin{matrix} \widehat{DCF}=\frac{180^0-\widehat{FDC}}{2}=\frac{\widehat{ADC}}{2}\\ \widehat{BCE}=\frac{180^0-\widehat{CBE}}{2}=\frac{\widehat{ABC}}{2}\end{matrix}\right.\)

\(\Rightarrow \widehat{DCF}+\widehat{BCE}=\frac{\widehat{ADC}+\widehat{ABC}}{2}=\frac{180^0-\widehat{DCB}+180^0-\widehat{DCB}}{2}\)

\(\Leftrightarrow \widehat{DCF}+\widehat{BCE}=180^0-\widehat{DCB}\)

\(\Leftrightarrow \widehat{DCF}+\widehat{DCB}+\widehat{BCE}=\widehat{FCE}=180^0\)

Kéo theo \(E,C,F\) thẳng hàng (đpcm).