Tam giác ABC có ˆA=105∘A^=105∘, ˆB=45∘B^=45∘, BC = 4cm. Tính độ dài các cạnh AB, AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ đường cao AH. Đặt BH = x, CH = y thì do H nằm giữa B và C (hai góc ∠ B, ∠ C là góc nhọn) suy ra x + y = 4 (xem h.bs.18).
Ta có BH = AH = HC.tg 30 ° nên x – y.tg 30 ° = y/ 3
AC = 2AH ≈ 1,46. 2 = 2,92 (cm).
ABH^ = 45* và AHB^ = 90* => AHB là tam giác vuông cân
=> AH = BH (1)
ACH^ = 180* - A^ - B^ = 180* - 105* - 45* = 30*
=> AH = AC/2 => AC = 2AH
BC = CH + BH = 4 => CH = 4 - BH (2)
(1) và (2) => CH = 4 - AH
AC^2 = CH^2 + AH^2
4AH^2 = (4 - AH)^2 + AH^2
4AH^2 = 16 - 8AH^2 + AH^2 + AH^2
<=> 2AH^2 + 8AH - 16 = 0
<=> AH^2 + 4AH - 8 = 0
=> AH = 2(√3 -1)
=> AB^2 = 2AH^2 = 2.4(3 - 2√3 + 1) = 8(4 - 2√3) = 16(2 - √3)
=> AB = 4√(2 - √3)
AC = 2AH = 4(√3 -1)
bạn nên nhớ 2 công thức sau:
+ trong tam giác có góc A = 60độ thì ta có: BC² = AB² + AC² - AC.AB.
+ trong tam giác có góc A = 120độ thì ta có: BC² = AB² + AC² + AC.AB.
Giải: Kẻ đường cao BH của ∆ABC. xét tam giác ABH vuông tại H, có góc BAH = 60độ => góc ABH = 30độ => AB = 2.AH (bổ đề: trong tam giác vuông có góc = 30độ, thì cạnh đối diện với góc 30độ = nửa cạnh huyền - c/m không khó)..
Xét ∆BHC vuông tại H => BC² = BH² + HC² = BH² + (AC - AH)²
= BH² + AH² + AC² - 2.AH.AC
= (BH² + AH²) + AC² - AB.AC (vì AB = 2AH)
= AB² + AC² - AB.AC => ta đã c/m đc. công thức 1. Thay AB = 28cm và AC = 35cm vào ta tính được BC = √1029 (cm) ≈ 32,08 (cm)
Công thức 2 thì cách chứng minh cũng khá giống, cũng kẻ đường cao từ B. Tự chứng minh nha bạn ^^
Vẽ đường cao AH . Đặt BH = x, CH = y thì do H nằm giữa B và C ( hai góc \(\widehat{B } ; \widehat{C}\) là góc nhọn) suy ra x + y = 4
Ta có \(BH=AH=HC.tg30^o\)nên \(x-y.tg30^o=y\sqrt{3}\)
\(\Rightarrow x=\frac{4}{1+\sqrt{3}}\approx1,46\left(cm\right)\)
Vậy \(AB=\frac{AH}{\sin45^o}=\frac{2AH}{\sqrt{2}}\approx2,06\left(cm\right)\)
\(AC=2AH\approx1,46.2=2,92\left(cm\right)\)
AC = 2AH ≈ 1,46. 2 = 2,92 ( cm )