Cho tam giác ABC vuông tại A và một điểm M trên BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Tìm vị trí điểm M trên BC để DE có độ dài nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy ngay DMEA là hình chữ nhật nên DE = AM
Gọi H là chân đường vuông góc hạ từ A xuống BC.
Theo quan hệ giữa đường vuông góc và đường xiên thì \(AM\ge AH\)
Vậy AM nhỏ nhất khi AM = AH hay DE nhỏ nhất khi M trùng H.
ADME là hình chữ nhật (3 góc vuông)
=> ED = AM
AM ngắn nhất khi AM vuông góc vs BC
=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC
Do E đối xứng với M qua AC nên AC là đường trung trực EM.
Do đó AE = AM (1). Tương tự AD = AM (2)
Cộng theo vế (1) và (2) suy ra AE + AD = 2AM. (3)
*Chứng minh A, E, D thẳng hàng
Theo (1) thì AE = AM -> tam giác AEM cân tại A.
Do đó \(\widehat{EAM}=180^o-2\widehat{EMA}\)(4)
Tương tự \(\widehat{MAD}=180^o-2\widehat{AMD}\)(5)
Cộng theo vế (4) và (5) suy ra ^EAD = 180o do đó D, E, A thẳng hàng => AE + AD = ED
Kết hợp (3) ED = 2AM . Hạ \(AH\perp BC\) thì \(AM\ge AH\)
Đẳng thức xảy ra khi M trùng H.
Do đó \(ED\ge2AM\ge2AH=const\)
Đẳng thức xảy ra khi M trùng H hay M là chân đường cao hạ từ A đến BC.
P/s: Mới học dạng này nên ko chắc..
dễ thấy tứ giác ADME là hình chữ nhật do có 3 góc vuông
nên chu vi ADME=2(AE+EM)
mà do ABC vuông cân nên góc ECM =45 độ nên MEC vuông cân tại E nên EM=EC
nên chu vi ADME=2(AE+EM)=2(AE+EC)=2AC là không đổi
b.DE=AM nhỏ nhaasrt khi M là hình chiếu của A lên BC
a: Xét tứ giác ADME có
gócADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b: góc AHM=góc AEM=góc ADM=90 độ
=>A,D,H,M,E cùng thuộc đường tròn đường kính AM
mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)
nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ
c: DE=AM
AM>=AH
=>DE>=AH
Dấu = xảy ra khi M trùng với H
=>M là chân đường cao kẻ từ A xuống BC
tam giác ABC vuông ở A cho ta góc BAC =90 độ
MD vuông góc với AB => góc MDA =90 độ
ME vuông góc với AC => góc MEA =90 độ
=> tứ giác ADME là hình chữ nhật => DE=AM =>DE min<=> AM min <=> AM vuông góc với BC
Vậy M là chân đường cao kẻ từ A , M thuộc BC thì DE có độ dài nhỏ nhất