tìm n thuộc N :
121 : 11n = 1331
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^5=x\Rightarrow x=243\)
b) \(x^4=16\Rightarrow x^4=2^4\Rightarrow x=2\)
c) \(4^n=64\Rightarrow4^n=4^3\Rightarrow n=3\)
\(5^4=n\Rightarrow n=625\)
\(n^3=125\Rightarrow n^3=5^3\Rightarrow n=5\)
\(11^n=1313\Rightarrow11^n=11.121\Rightarrow11^{n-1}=121\Rightarrow11^{n-1}=11^2\Rightarrow n-1=11\Rightarrow n=12\)
1)
a)
Để tìm x trong phương trình 3^5 = x, ta thực hiện phép tính 3^5 = 3 * 3 * 3 * 3 * 3 = 243. Vậy x = 243.
b)
Để tìm x trong phương trình x^4 = 16, ta thực hiện phép tính căn bậc 4 của cả hai vế phương trình: √(x^4) = √16. Khi đó, ta được x = ±2.
c)
Để tìm n trong phương trình 4^n = 64, ta thực hiện phép tính logarit cơ số 4 của cả hai vế phương trình: log4(4^n) = log4(64). Khi đó, ta được n = 3.
2) a)
Để tìm n trong phương trình 5^4 = N, ta thực hiện phép tính 5^4 = 5 * 5 * 5 * 5 = 625. Vậy N = 625.
b)
Để tìm n trong phương trình n^3 = 125, ta thực hiện phép tính căn bậc 3 của cả hai vế phương trình: ∛(n^3) = ∛125. Khi đó, ta được n = 5.
c)
Để tìm n trong phương trình 11^n = 1331, ta thực hiện phép tính logarit cơ số 11 của cả hai vế phương trình: log11(11^n) = log11(1331). Khi đó, ta được n = 3.
1)\(8.2^n=128\Rightarrow2^n=128:8\Rightarrow2^n=16\Rightarrow2^n=2^4\Rightarrow n=4\)
2)\(121.11^n=1331\Rightarrow11^n=1331:121\Rightarrow11^n=11\Rightarrow n=1\)
3)\(7^n:49=343\Rightarrow7^n:7^2=7^3\Rightarrow7^n=7^3.7^2\Rightarrow7^n=7^5\Rightarrow n=5\)
nhớ **** cho mình nhé
a, n3 = 125
n3 = 53
n = 5
b, 11n = 1331
11n = 113
n = 3
1+2+3+...+n= 11n
(n-1):1+1). ( n+1):2=11n
n.(n+1)/2= 11n
n.(n+1)= 22n
=> n+1= 23=> n=22
n+1= 21=> n= 20
mà n(n+1)=22n=> n hoặc n+1= 22
vậy n= 22
121 : 11n = 1331
=> 11n = 161051
=> 11n = 115
=> n = 5
\(121:11^n=1331\)
\(11^n=\frac{121}{1331}\)
\(11^n=\frac{1}{11}\)
\(11^n=11^{-1}\)
\(\Rightarrow n=-1\)
Vậy \(n=-1\)
Vậy \(n=-1\)