K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)

4 tháng 11 2018

m kmnhbk5htb ,k55555555555555555555555555555555555e,

4 tháng 11 2018

\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)

Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)

21 tháng 10 2018

\(\sqrt{8}\)-\(\sqrt{5}\)<1

23 tháng 10 2018

Ta có : \(1=3-2=\sqrt{9}-\sqrt{4}\)

\(\left\{{}\begin{matrix}\sqrt{9}>\sqrt{8}\\\sqrt{4}< \sqrt{5}\end{matrix}\right.\Rightarrow}\left\{{}\sqrt{8}-\sqrt{5}< \sqrt{9}-\sqrt{4}=1}\)