Cho hình thang ABCD (AB // CD) ,góc ABC =90 độ,BD vuông góc với AD,Bc=5cm và BD=13cm.Tính diện tích hình thang ABCD
Giúp mik nha.Mink cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)
Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)
Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)
ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)
\(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)
\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)
\(\Rightarrow\widehat{ABC}=150^0\)
b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)
Diện tích hình thang ABCD là:
\(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\)
Chúc bạn học tốt.
Xét \(\Delta ABD\) có :
\(\begin{cases}AB=AD\\\widehat{A}=90^0\end{cases}\)=> \(\Delta ABD\) vuông cân tại A
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\AB^2+AD^2=BD^2\end{cases}\)
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\5^2+5^2=BD^2\end{cases}\)
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\50=BD^2\end{cases}\)
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\BD=5\sqrt{2}\end{cases}\)
Mà \(\widehat{D_2}+\widehat{D_1}=90^0\)
\(\Rightarrow\widehat{D_2}=45^0\)
\(\Rightarrow\widehat{ABC}=135^0\)
Mặt khác :\(\widehat{C_1}+\widehat{ABC}=180^0\)
\(\Rightarrow\widehat{C_1}=45^0\)
\(\Rightarrow\Delta BDC\) vuông cân tại B
\(\Rightarrow BD=BC=5\sqrt{2}\)
\(\Rightarrow\left(5\sqrt{2}\right)^2+\left(5\sqrt{2}\right)^2=CD^2\)
\(\Rightarrow50+50=CD^2\)
\(\Rightarrow CD=10\)
\(\Rightarrow S_{ABCD}=\frac{\left(10+5\right).5}{2}=\frac{15.5}{2}=\frac{75}{2}\left(cm^2\right)\)
Vậy diện tích ABCD là \(\frac{75}{2}cm^2\)
Ta có AB = AD => Góc ABD = góc ADB = 45 độ.
Mà BDC = ABD (so le trong) và ADB = BCD ( cùng phụ góc BDC)
=> Tam giác BDC là tam giác vuông cân tại B
Xét tam giác ABD, áp dụng Pytago ta được BD = 5 căn 2. cm
=> CD = 10 cm.
=> Diện tích hình thang ABCD là 37,5 cm2
(Bạn tự vẽ hình nhé. sai chỗ nào mong bạn thông cảm :)))
Xét tam giác ABD và tam giác BDC có:
\(\widehat{BAD}=\widehat{DBC}=90^o\)
\(\widehat{ABD}=\widehat{BDC}\) (Cùng phụ với góc \(\widehat{ADC}\) )
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)
Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:
\(DB^2=AB^2+AD^2=2^2+4^2=20\)
Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)
Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)
Vậy chu vi hình thang vuông bằng: 2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)
Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)