Gía trị của biểu thức A= x2 + x4 + x6 +..........+x100 với x= -1 là A.........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -1 và đa thức, ta có:
(-1)2 + (-1)4 + (-1)6 + … + (-1)100 =
Vậy giá trị đa thức bằng 50 tại x = -1.
A(x)=F(x)-G(x)
=1+x+x^2+...+x^100-x^2-x^4-...-x^100
=1+x+x^3+...+x^99
Số số lẻ từ 1 đến 99 là (99-1):2+1=50(số)
A(-1)=1+(-1)+(-1)^3+...+(-1)^99
=1-50*1=1-50=-49
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
a,
\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)
Thay $x=\dfrac12$ vào $A$, ta được:
\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)
Vậy $A=\dfrac94$ khi $x=\dfrac12$.
b,
\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)
Thay $x=1$ vào $B$, ta được:
\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)
Vậy $B=0$ khi $x=1$.
$Toru$
a: A=x^5-32
Khi x=3 thì A=3^5-32=243-32=211
b: B=x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+x^7-x^6+x^5-x^4+x^3-x^2+x-1
=x^8-1
=2^8-1=255
Ta có: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-8=0\)
Do đó: C=0
thay x=2; y=-2 vào \(x^3-2y^2=2^3-2\left(-2\right)^2=8-8=0\)
\(\Rightarrow C=0\)
ko hiểu thì nhìn ở trên các số nhân với nhau nhưng mà lại có 1 thừa số =0 nên cả cái biểu thức =0
Cho x, y là hai số thỏa mãn x2 - y2 = 2
Vậy giá trị của biểu thức A = 2.(x6 - y6) - 6.( x4 + y4) là?
Ta có : \(x2-y2=2\Rightarrow\left(x-y\right)2=2\Rightarrow x-y=1\)
\(A=2\left(x6-y6\right)-6\left(x4+y4\right)\)
\(\Rightarrow2\left[\left(x-y\right)6\right]-6\left[\left(x+y\right)4\right]\)
Mà \(x-y=1\Rightarrow A=2.6-6\left[\left(x+y\right)4\right]\)
\(\Rightarrow A=6\left[2-\left(x+y\right)4\right]\)
\(\Rightarrow A=6\left[2-4x-4y\right]=6\left[2-4\left(x-y\right)\right]\)
\(\Rightarrow A=6\left[2-4.1\right]=6.\left[2-4\right]=6.\left(-2\right)=-12\)
Vậy A = -12