Tính tổng:
\(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{n^2+3n+2-2}{2\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)