K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Phương trình hoành độ giao điểm của (d) và (d') là:

\(-2x+5=\dfrac{1}{2}x\)

\(\Leftrightarrow-2x-\dfrac{1}{2}x=-5\)

\(\Leftrightarrow x\cdot\dfrac{-5}{2}=-5\)

hay \(x=-5:\dfrac{-5}{2}=-5\cdot\dfrac{2}{-5}=2\)

Thay x=2 vào (d), ta được:

\(y=-2\cdot2+5=-4+5=1\)

19 tháng 9 2023

a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)

loading...

b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

\(\Rightarrow M\left(-5;5\right)\)

c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)

\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)

\(\left(d'\right):y=-x\Rightarrow k_1-1\)

\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)

\(\Rightarrow\widehat{M}\sim18^o\)

19 tháng 9 2023

d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)

\(\Leftrightarrow y=-2.0-5=-5\)

\(\Rightarrow A\left(0;-5\right)\)

\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)

\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)

\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta MOA:\)

\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)

\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)

\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)

\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)

\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)

\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)

Diện tích \(\Delta MOA:\)

\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)

27 tháng 11 2021

\(b,\text{PT hoành độ giao điểm: }2x=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow A\left(1;2\right)\)

27 tháng 11 2021

làm ơn ai làm nhanh hộ mình với hãy giúp mik 

8 tháng 12 2021

\(a,-1< 0\Leftrightarrow\left(d'\right)\text{ nghịch biến trên }R\\ b,\text{PT hoành độ giao điểm: }x=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow A\left(1;1\right)\\ \text{Vậy }A\left(1;1\right)\text{ là giao 2 đths}\\ c,\text{3 đt đồng quy }\Leftrightarrow A\left(1;1\right)\in\left(d''\right)\\ \Leftrightarrow m-1+2m=1\\ \Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)

11 tháng 12 2021

câu B vẽ cho mình đồ thị được ko bạn

 

b: Phương trình hoành độ giao điểm là:

2x+1=x+3

=>2x-x=3-1

=>x=2

Thay x=2 vào y=x+3, ta được:

y=2+3=5

a: loading...

31 tháng 10 2021

b, PT hoành độ giao điểm: \(2x-5=-\dfrac{1}{2}x\Leftrightarrow x=2\Leftrightarrow y=-\dfrac{1}{2}\cdot2=-1\)

\(\Leftrightarrow A\left(2;-1\right)\)

Vậy A(2;-1) là tọa độ giao điểm 2 đths