K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

\(a,\widehat{AFH}=\widehat{AEH}=\widehat{EAF}=90^0\) nên \(AFHE\) là hcn

\(b,\) Vì \(AFHE\) là hcn nên \(AE=FH=FM\left(t/c.đối.xúng\right);AE//FH\)

\(\left\{{}\begin{matrix}AE=FM\\AE//FM\left(AE//FH\right)\end{matrix}\right.\Rightarrow AEFM\) là hbh

\(c,\) Tam giác AHN có AE vừa là đường cao và trung tuyến nên cân tại A

Do đó AE cũng là p/g \(\widehat{HAN}\)

\(\Rightarrow\widehat{NAE}=\widehat{HAE}\)

Mà \(\widehat{HAE}=\widehat{ACB}\left(cùng.phụ.với.\widehat{ACH}\right)\)

\(\Rightarrow\widehat{NAE}=\widehat{ACB}\left(1\right)\)

Vì AI là trung tuyến ứng với cạnh huyền tam giác ABC vuông tại A nên \(AI=BI=IC=\dfrac{1}{2}BC\Rightarrow\Delta AIB\) cân tại I

\(\Rightarrow\widehat{IAB}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{NAE}+\widehat{IAB}=\widehat{ACB}+\widehat{ABC}=90^0\left(\Delta ABC.vuông.tại.A\right)\\ \Rightarrow\widehat{IAN}=90^0\\ \Rightarrow AI\perp MN\)

 

 

10 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Xét ΔAHM có

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM(1)

Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAN(2)

Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{BAC}=180^0\)

hay M,A,N thẳng hàng

Xét ΔAHB và ΔAMB có

AH=AM

\(\widehat{BAH}=\widehat{MAH}\)

AH chung

Do đó: ΔAHB=ΔAMB

Suy ra: \(\widehat{AHB}=\widehat{AMB}=90^0\)

hay BM\(\perp\)MA

hay BM\(\perp\)MN(3)

Xét ΔAHC và ΔANC có

AH=AN

\(\widehat{HAC}=\widehat{NAC}\)

AC chung

Do đó: ΔAHC=ΔANC

Suy ra: \(\widehat{AHC}=\widehat{ANC}=90^0\)

hay CN\(\perp\)NA

=>CN\(\perp\)NM(4)

Từ(3) và (4) suy ra MB//NC

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc CAB=90 độ

Do đó: ABDC là hình chữ nhật

22 tháng 10 2021

a, Vì AE là vừa là đg cao (AE⊥HM) vừa là trung tuyến nên tg AHM cân tại A

Do đó AH=AM

Vì AF là vừa là đg cao (AF⊥HN) vừa là trung tuyến nên tg AHN cân tại A

Do đó AH=AN

Từ đó ta được AM=AN hay tg AMN cân tại A

b, Vì E,F là trung điểm HM,HN nên EF là đtb tg MHN

Do đó EF//MN

c, Vì AI là trung tuyến tg AMN cân tại A nên AI cũng là đg cao

Do đó AI⊥MN

Mà EF//MN nên AI⊥EF

d, Vì tg AEH và tg AFH cân tại A nên AE,AF lần lượt là p/g \(\widehat{MAH}\) và \(\widehat{NAH}\)

Do đó \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{EAH}+2\cdot\widehat{FAH}=2\cdot\widehat{BAC}\)