Cho hình bình hành ABCD , vẽ tia Ax cắt BD ở I cắt tia BC ở G và DC ở K
a,tỉ số ID/IB bằng bao nhiêu ? . Chứng minh AI2=IG*IK
b, Chứng minh 1/AG + 1/AK = 1/AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
vì ABCD là hình bình hành
suy ra AB//CD, AD//BC
vì AB//DK, theo Tales, ta có
BM/MD = MA/MK
vì AD//BN, theo Tales, ta có
MN/MA = BM/DM
b.
từ BM/MD = MA/MK
và BM/MD = MN/MA
suy ra MA/MK = MN/MA
hay MA^2 = MN.MK
a. -Xét △AID: AD//BJ (ABCD là hình bình hành).
\(\Rightarrow\dfrac{IA}{IJ}=\dfrac{ID}{IB}\) (định lí Ta-let). (1)
-Xét △AIB: AB//DK (ABCD là hình bình hành).
\(\Rightarrow\dfrac{IK}{IA}=\dfrac{ID}{IB}\) (định lí Ta-let). (2)
-Từ (1), (2) suy ra: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) nên \(IA^2=IK.IJ\).
b. -Có: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) (cmt)
\(\Rightarrow\dfrac{IA+IJ}{IJ}=\dfrac{IK+IA}{IA}\)
\(\Rightarrow\dfrac{AJ}{IJ}=\dfrac{AK}{IA}\)
\(\Rightarrow\dfrac{AK}{IA}=\dfrac{AJ+AK}{IJ+IA}=\dfrac{AJ+AK}{AJ}\)
\(\Rightarrow\dfrac{1}{IA}=\dfrac{AJ+AK}{AJ.AK}\)
\(\Rightarrow\dfrac{1}{IA}=\dfrac{1}{AK}+\dfrac{1}{AJ}\)
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
a: Xét tứ giác BDCE có
BE//CD
BE=CD
Do đó: BDCE là hình bình hành