K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

\(\left(x-\sqrt{2}\right)+3.\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3.\left(x^2-\sqrt{2}^2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3.\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right).\left[1+3.\left(x+\sqrt{2}\right)\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\1+3.\left(x+\sqrt{2}\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x+\sqrt{2}=-\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\frac{1}{3}-\sqrt{2}\end{cases}}}}\)

Vậy ...

12 tháng 3 2023

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{2x+4\sqrt{x}}{x-4\sqrt{x}+4}\)

12 tháng 3 2023

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2}\) (\(đk:x\ge0;x\ne\sqrt{2}\))

\(=\dfrac{2x+4\sqrt{x}}{x-4\sqrt{x}+4}\)

\(\)

4 tháng 2 2022

b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

pt luôn có 2 nghiệm phân biệt

c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)

(số bình phương luôn lớn hơn bằng 0) với mọi n

4 tháng 2 2022

2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

Vậy pt luôn có 2 nghiệm pb 

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)

Vì x1 là nghiệm của pt trên nên ta được 

\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)

Thay vào ta được 

\(2nx_1-x_1-n^2+n-2x_2+3\)

bạn kiểm tra lại đề nhé 

21 tháng 5 2017

\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}+2.\sqrt{x+\frac{1}{4}}.\frac{1}{2}+\frac{1}{4}}=2-x\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2-x\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2-x\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}}=\frac{3}{2}-x\)(\(x\le\frac{3}{4}\))

 \(\Leftrightarrow x^2-4x+2=0\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{2}\\2+\sqrt{2}\left(l\right)\end{cases}}\) 

21 tháng 5 2017

mình mới học lớp 5 ko biết làm 

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

17 tháng 10 2016

1 x= -3

2 x=6

3 x=0

14 tháng 12 2020

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

14 tháng 12 2020

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ

20 tháng 6 2016

bạn ơi giúp mình vs 

tìm x,y, z nguyên thỏa mãn

x^3 + xyz = 957

y^3 + xyz = 759

z^3 + xyz = 579

20 tháng 6 2016

\(\Leftrightarrow x-3\sqrt{x}-\sqrt{x-8}+1=0\)

\(\Leftrightarrow x=9\left(tm\right)\)