( x -4 ) . ( x + 4 ) < 0
Giúp mk voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x+2)(x-3)>0
nên x+2;x-3 cùng dấu
=>x>3 hoặc x<-2
b: (x-1)(x+4)<=0
nên x-1 và x+4 khác dấu
=>-4<=x<=1
a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)
c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Xem lại đề câu d
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(x^5+x^4+x+1=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
`5/(-x^2+5x-6)+(x+3)/(2-x)=0`
Đk:`x ne 2,x ne 3`
`pt<=>-5/(x^2-5x+6)-(x+3)/(x-2)=0`
`<=>-5-(x+3)(x-3)=0`
`<=>(x+3)(x-3)=-5`
`<=>x^2-9=-5`
`<=>x^2-4=0`
`<=>(x-2)(x+2)=0`
`x ne 2=>x-2 ne 0`
`<=>x+2=0`
`<=>x=-2`
Vậy `S={-2}`
Vì \(x^2+1>0\) nên \(x^2-4=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
ĐK: x E Z
(x-4)(x+4)<0
<=> x^2-16<0
<=> x^2<16 <=> x^2 E {0;1;4;9}
<=> x E {0;+-1;+-2;+-3}
\(\left(x-4\right)\left(x+4\right)< 0\)
Xét từng trường hợp :
TH1:\(\hept{\begin{cases}x-4>0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -4\end{cases}\Rightarrow\varnothing}\)
TH2: \(\hept{\begin{cases}x-4< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 4\\x>-4\end{cases}}}\Leftrightarrow-4< x< 4\)
Vậy \(-4< 0< 4\)thì..........