Giải các phương trình và bất phương trình sau:
a) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
b) \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)
c) \(\dfrac{\sqrt{2-x}+4x-3}{x}\ge2\)
d) \(6\sqrt{\left(x-2\right)\left(x-32\right)}\le x^{^{ }2}-34x+48\)
$a)\frac{2x}{2x^{2}-5x+3}+\frac{13x}{2x^{2}+x+3}=6$ (1)
Nhận thấy x=0 ko phải nghiệm của phương trình
Chia cả tử và mẫu của mỗi phân thức cho x, ta được:
$\frac{2}{2x-5+\frac{3}{x}}+\frac{13}{2x+1+\frac{3}{x}}=6$
Đặt $2x+\frac{3}{x}$=t
=> (1) <=> $\frac{2}{t-5}+\frac{13}{t+1}=6$
<=> $2t^{2}-13t+11=0$
Có a+b+c=2-13+11=0
=> $t_{1}=1$
$t_{2}=\frac{c}{a}=\frac{11}{2}$
* t = 1
=> $2x+\frac{3}{x}=1$
<=> $2x^{2}-x+3=0$ (vô nghiệm)
* t = $\frac{11}{2}$
=> $2x+\frac{3}{x}=\frac{11}{2}$
<=> $4x^{2}-11x+6=0$
=> $x_{1}=\frac{3}{4}$
$x_{2}=2$
Vậy phương trình có tập nghiệm S={$\frac{3}{4};2$}
b, \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)
\(\Leftrightarrow\left[x^2+\left(\dfrac{x}{x-1}\right)^2+2.x.\dfrac{x}{x-1}\right]-2.\dfrac{x^2}{x-1}-1=0\)
\(\Leftrightarrow\left(x+\dfrac{x}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\)
\(\Leftrightarrow\left(\dfrac{x\left(x-1\right)+x}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\)
\(\Leftrightarrow\left(\dfrac{x^2}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\) (1)
Đặt : \(\dfrac{x^2}{x-1}=t\) (*) thì phương trình (1) trở thành:
\(t^2-2t-1=0\)
Ta có: \(\Delta=8>0\)
\(\Rightarrow t_1=\dfrac{2-\sqrt{8}}{2}=\dfrac{2-2\sqrt{2}}{2}=1-\sqrt{2}\)
\(t_2=\dfrac{2+\sqrt{8}}{2}=\dfrac{2+2\sqrt{2}}{2}=1+\sqrt{2}\)
Thay vào (*) rồi tìm x là xong
=.= hk tốt!!