1, Cho Δ ABC cân tại A. Kẻ AI ⊥ BC tại I ( I ∈ BC).Lấy điểm E ∈ AB và điểm F ∈ ACsao cho AE = AF.
a, CMR BI = CI
b, CMR Δ IEF là Δ cân
c, CMR EF song song với BC
d, CMR AE = EI thì E là trung điểm của AB
Giúp minh nha !!! Vẽ hình ra nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh câu a
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác ABI = tam giác ACI ( c-g-c )
Suy ra BI = CI
Sửa đề: AI vuông góc với BC
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
mà B,I,C thẳng hàng(gt)
nên I là trung điểm của BC(đpcm)
b) Ta có: ΔAIB=ΔAIC(cmt)
nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
hay \(\widehat{EAI}=\widehat{FAI}\)
Xét ΔEAI và ΔFAI có
AE=AF(gt)
\(\widehat{EAI}=\widehat{FAI}\)(cmt)
AI chung
Do đó: ΔEAI=ΔFAI(c-g-c)
Suy ra: IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔIEF cân tại I(Định nghĩa tam giác cân)
c) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBI và ΔFCI có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEBI=ΔFCI(c-g-c)
a) Xét hai tam giác vuông IBA và ICA có:
IA cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác IBA = tam giác ICA ( ch-cgv )
Suy ra IB = IC ( đpcm )
c) AE + EB = AB
À + FC = AC
Mà EB = FC ( gt )
AB = AC ( tam giác ABC cân tại A )
Suy ra AE = À
Suy ra tam giác AEF cân tại A
Suy ra góc AEF = 180 độ - góc BAC / 2
góc ABC = 180 độ - góc BAC / 2 ( tam giác ABC cân tại A )
Suy ra góc AEF = góc ABC và hai góc này ở vị trí đồng vị
Suy ra EF song song BC
câu b để từ từ tui nghĩ
a: Xét tứ giác BIKH có
BI//KH
IK//BH
Do đó: BIKH là hình bình hành
=>KH=IB
b: Xét ΔABC có
I là trung điểm của AB
IK//BC
Do đó: Klà trung điểmcủa AC
=>KA=KC