Tìm các số nguyên dương x, y thỏa mãn 2x+3y=14
p/s Trình bày gon gàng nha, đừng thiếu hoăc rườm rà
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi pt thành : y^2 - (x^2)y + x^4 -81001 = 0
Lập denta của pt ẩn y ta được denta bằng : 324004 - 3 x^4.
Để pt có nghiệm y thì denta lớn hơn hoặc bằng 0
Từ đó suy ra 18 >= x >= -18
t i c k nhé!! 436565667676879867856735623626356562442516576678768987978
dạnh toán này quá cao siêu quá,ko phù hợp vs em...hs lớp 6
Cho x,y,z là các số thực dương thỏa mãn:2x+3y+z=1.Tìm GTNN của biểu thức P=\(x^3+y^3+z^3\)
Lời giải:
Áp dụng PP tìm điểm rơi và BĐT Cauchy cho các số dương:
\(x^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3x\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)
\(y^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3y\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)
\(z^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3z\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)
Cộng theo vế:
\(P+\frac{2}{(2\sqrt{2}+3\sqrt{3}+1)^2}\geq \frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}(2x+3y+z)=\frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)
\(\Rightarrow P\geq \frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)
Vậy \(P_{\min}=\frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)
Rất rất nhiều nha!
Ví dụ 1 cặp:
Ta có: 3.20=60
=> 2x+1=3
=>2x=2
=>x=1 -> (1)
y-3=20
=>y=23 -> (2)
Từ (1);(2)=>Ta có trường hợp: x=1; y=23
Ta có :
x(y + 2) - y = 3
xy + 2x - y = 3
xy - y + 2x - 2 = 3 - 2
(x - 1)y + 2(x - 1) = 1
(2 + y)(x - 1) = 1 = 1.1 = (-1).(-1)
Xét 2 trường hợp ,ta có :
\(\left(1\right)\hept{\begin{cases}2+y=1\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)
\(\left(2\right)\hept{\begin{cases}2+y=-1\\x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=0\end{cases}}}\)
`(x-1)^2>=0`
`|3y-1|>=0`
`|z+2|>=0`
`=>(x-1)^2+|3y-1|+|z+2|>=0`
Mà đề bài cho =0
`=>{(x-1=0),(3y-1=0),(z+2=0):}`
`=>{(x=1),(y=1/3),(z=-2):}`
Vậy `x=1` và `y=1/3` và `z=-2`
ta co :2x+3y=14
vi 2xchia cho 2
ma14chia het cho 2
suy ra 3y chia het cho 2
suy ra y chia het cho 2 (do (3,2)=1)
suy ra y=2k (k thuoc N)
lai co :2x+2*3k=14
suy ra x + 2y=7
suy ra :x=7-2k (k thuoc N)
Vay ta co cap (x;y) ...
con phan dap so thi ban tu lam
2x+3y=14 (1)
Ta có : \(14⋮2\)( chỗ này e ngoặc dấu và } cả 3 cái dòng đầu này lại nhé từ 2x+3y=14 đến dòng 2x \(⋮2\))
\(2⋮2\Rightarrow2x⋮2\)
\(\Rightarrow3y⋮2\)mà ( 3;2)=1
\(\Rightarrow y⋮2\)
\(\Rightarrow y=2k\)( \(k\in N\))
Thay y=2k vào (1) ta được:
2.x+3.2k=14
2.(x+3k)=14
x+3k=7
x=7-3k
Thay x= 7-3k và y= 2k vào (1) ta được:
2.(7-2k) + 3.2k=14
14-4k +3.2k=14
14-2k.(2+3)=14
2k.5=0
2k=0
k=0
\(\Rightarrow\hept{\begin{cases}y=2.0=0\\x=7-2.0=7\end{cases}}\) ( thỏa mãn )
Vậy x=7 và y=0