CTR : Nếu đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0x^0\) có tổng các hệ số của hạng tử bậc chãn bằng tổng các hệ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Không mất tổng quát, giả sử n chẵn.
Khi đó các hệ số bậc chẵn là: \(a_n, a_{n-2},...,a_0\), và các hệ số bậc lẻ là \(a_{n-1}, a_{n-3},...,a_1\). Theo bài ra ta có:
\(a_n+a_{n-2}+...+a_0=a_{n-1}+a_{n-3}+...+a_1(*)\)
Ta thấy \((-1)^k=\left\{\begin{matrix} \text{1 nếu k chẵn}\\ \text{-1 nếu k lẻ}\end{matrix}\right.\). Do đó:
\(F(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0x^0\)
\(\Rightarrow F(-1)=a_n(-1)^n+a_{n-1}(-1)^{n-1}+...+a_1(-1)+a_0\)
\(=a_n+(-1)a_{n-1}+a_{n-2}+(-1)a_{n-3}+....+(-1)a_1+a_0\)
\(=(a_n+a_{n-2}+...+a_0)-(a_{n-1}+a_{n-3}+...+a_1)\)
\(=0\) (do $(*)$)
Vậy \(F(-1)=0\), tức là $x=-1$ là nghiệm của đa thức $F(x)$
Gỉa sử P(x) có một nghiệm nguyên là \(x_0\left(x_0\ne0\right)\)
Ta có \(P\left(x\right)=a_nx_0^n+a_{n-1}x_0^{n-1}+...+a_1x_0+a_0=0.\)
Như vậy \(P\left(x_0\right)=0⋮x_0\)và các số hạng \(a_nx_0^n+a_{n-1}x_0^{n-1}+...+a_1x_0\)đều chia hết cho \(x_0\), suy ra \(a_0\)cũng phải chia hết \(x_0\)tức \(x_0\)là ước của \(a_0\)
Ta có \(f\left(7\right)=15\Rightarrow f\left(7\right)-15=0\Rightarrow f\left(x\right)-15=P\left(x\right).\left(x-7\right)\)
\(\Rightarrow f\left(15\right)-15=P\left(x\right).8\Rightarrow-15=P\left(x\right).8\Rightarrow P\left(x\right)=\dfrac{-3}{4}\). (vô lí vì P(x) có các hệ số đều nguyên).
Vậy...
- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn
- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)
Do \(\alpha\) là nghiệm nên:
\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)
\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)
\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)
\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)
TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)
TH2: Nếu \(\left|\alpha\right|>1\)
\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)
\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)