K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 6 2020

Lời giải:
Đặt $\frac{b}{2}=m; \frac{a}{2}=n$

Ta có:

$\tan m=4\tan n$.

$\tan (m-n)=\frac{\tan m-\tan n}{1+\tan m\tan n}=\frac{3\tan n}{1+4\tan ^2n}$

....

Thực ra nó chả ra một con số cụ thể nào cả, và cũng có nhiều kết quả biến đổi. Có lẽ bạn viết thiếu đề.

NV
25 tháng 5 2020

\(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}=1\)

\(\Rightarrow a+b=45^0\)

NV
29 tháng 5 2020

\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)

Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)

\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)

\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)

Theo Viet đảo, \(tana;tanb\) là nghiệm của:

\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)

\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)

\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)