K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(a=\dfrac{a+1}{a-2020}\)

\(=\dfrac{a-2020}{a-2020}+\dfrac{2021}{a-2020}\)

\(=1+\dfrac{2021}{a-2020}\) Vì a>2020

\(1+\dfrac{2021}{a-2020}\text{≥}2\)

Min a=2 ⇔\(\dfrac{2021}{a-2020}=1\)

                ⇔\(a-2020=2021\)

                ⇔\(a=4041\)

28 tháng 10 2019

a,  1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020​ + (-2) ≥ (-2) => A ≥ -2

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)

Vậy GTNN A = -2 khi x = 2019 và y = 1

2, Ta có: |x - 3| = |3 - x|

Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1

=> C ≥ 1 - 5 => C ≥ -4

Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0

+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)

+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)

Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3

b,

1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9

Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5

Vậy GTLN B = 9 khi x = 5 hoặc x = -5

2, Đk: x ≠ 5

 \(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)

Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6

=> \(D=1+1=2\)

Vậy GTLN của D = 2 khi x = 6

16 tháng 3 2020

Minh tinh ra duoc la:

a=2020^99-2/2019

2020^99-1/2019       2020^99-2

2020^99-1     2020^99*2019-2*2019

2*2019-1   2020^99(2019-1)

2*2019-2   2020^99*2018

Gio phai lam sao tiep moi nguoi?

NV
18 tháng 8 2020

\(\left(a+b+c\right)^2=3a^2+3b^2+3c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow P=a^2+\left(a+2\right)\left(a+a\right)+2020\)

\(\Rightarrow P=3a^2+4a+2020=3\left(a+\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)

\(P_{min}=\frac{6056}{3}\) khi \(a=-\frac{2}{3}\)

18 tháng 8 2020

\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)_{ }\)

\(a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

Do đó  \(P=a^2+\left(a+2\right)\left(2a\right)+2020\)

\(P=a^2+2a^2+4a+2020\)

\(P=3a^2+4a+2020\)

\(3P=9a^2+12a+6060\)

\(3P=\left(3a\right)^2+2.\left(3a\right).2+4+6060-4\)

\(3P=\left(3a+2\right)^2+6056\ge6056\Leftrightarrow3P\ge6056\Leftrightarrow P\ge\frac{6056}{3}\)    Dấu "=" xảy ra khi a = b = c = \(-\frac{3}{2}\)

Vậy P đạt giá trị nhỏ nhất là 6056/3 khi a = b = c = -3/2

10 tháng 11 2021

Bạn tham khảo câu trả lời của mình tại :

Câu hỏi của Nguyễn Tiến Duy - Toán lớp 7 - Học trực tuyến OLM

10 tháng 11 2021

Vì \(\hept{\begin{cases}\left(x+5\right)^{2020}=x+\left(5^{1010}\right)^2≥0∀x\\\left|y-2021\right|≥0∀y\end{cases}}\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\ge2020∀x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\y-2021=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2021\end{cases}}\)

10 tháng 11 2021

Ta có:\(\left(x+5\right)^{20}\ge0\) 

\(\left|y-2021\right|\ge0\)
\(\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\le2020\)

Dấu bằng xảy ra khi  \(x+5=0\Rightarrow x=-5\) ; \(y-2021=0\Rightarrow y=2021\)

Vậy, GTNN của A =2020 khi x=-5; y=2021

18 tháng 7 2020

Trả lời:

\(A=\frac{2}{2018.2020}+\frac{2021}{2020}-\frac{2020}{2019}\)

\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-\left(1+\frac{1}{2018}\right)\)

\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-1-\frac{1}{2018}\)

\(A=0\)

\(A=\frac{2}{2018}\cdot2020+\frac{2021}{2020}-\frac{2019}{2018}\)

\(A=\frac{2\cdot2020-2019}{2018}+\frac{2021}{2020}\)

\(A=\frac{2021}{2018}+\frac{2021}{2020}\)

\(A=\frac{2021\cdot\left(2020+2018\right)}{2018\cdot2020}=\frac{2021\cdot4038}{2018\cdot2020}=\frac{2021\cdot2019\cdot2}{2018\cdot1010\cdot2}=\frac{2020^2-1}{2018\cdot101\cdot10}\)

\(A=\frac{4080399}{20200180}\)