K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

11 tháng 5 2022

sửa x^2 - x^2y + y^2 + 4xy 

Thay x = 1 ; y = 2 vào ta được 

\(1-2+4+8=11\)

12 tháng 5 2018

* Rút gọn:

\(A=\left(x^2+xy-y^2\right)-x^2-4xy-3y^2\)

\(A=x^2+xy-y^2-x^2-4xy-3y^2\)

\(A=\left(x^2-x^2\right)+\left(xy-4xy\right)+\left(-y^2-3y^2\right)\)

\(A=-3xy-4y^2\)

* Tính:

Thay x=0,5 và y= -4 vào biểu thức trên, ta được:

\(-3.0,5.\left(-4\right)=-1,5.\left(-4\right)=6\)

Vậy: giá trị biểu thức \(A=-3xy-4y^2\)tại x=0,5 và y=-4 là 8

a: C=A-B

\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)

\(=x^3+3x^2y+3xy^2+y^3\)

D=A+B

\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)

\(=9x^3-9x^2y+5xy^2+y^3\)

bậc của C là 3

bậc của D là 3

b: Thay x=0 và y=-2 vào D, ta được:

\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)

\(=0-0+0-8=-8\)

c: Thay x=-1 và y=-1 vào C, ta được:

\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)

=-8

5 tháng 8 2018

a) Kết quả M = -144.           b) Kết quả N = 27 2 .

18 tháng 7 2023

a) Ta có:

VT = (x - y)² + 4xy

= x² - 2xy + y² + 4xy

= x² + 2xy + y²

= (x + y)²

= VP

b) Ta có:

(x + y)² = (x - y)² + 4xy

= 5² + 4.3

= 25 + 12

= 37

a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)

 b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)

=8+1-2-10

=-3

30 tháng 3 2022

a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49

 b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10

=8+1-2-10

=-3

AH
Akai Haruma
Giáo viên
29 tháng 10

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. 

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều