cho \(\Delta\)ABC có 3 góc nhọn AB = c, AC = b, BC = a Chứng minh
a. \(\frac{\sin A}{\sin B}=\frac{a}{b}\)
b.\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) (Vẽ thêm các đường cao)
giúp mình vs mình đang cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : ; ;
;
(1)
Lại có :
(2)
Từ (1) và (2) ta có : (Đpcm)
Kẽ đường cao AH
\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)
\(\Rightarrow AH=c.sinB=b.sinC\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)
Tương tự ta cũng có
\(\frac{b}{sinB}=\frac{a}{sinA}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Từ A kẻ đường cao AH, H thuộc BC. Từ B kẻ đường cao BK, K thuộc AC
Ta có: \(\sin A=\frac{BK}{AB};\sin B=\frac{AH}{AB};\sin C=\frac{AH}{AC}\)
\(\Rightarrow\frac{AB}{\sin C}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{AC}{\sin B}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{c}{\sin C}=\frac{b}{\sin B}1\)
Lại có:
\(BK=\sin C.BC\Rightarrow\frac{BC}{\sin A}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{\sin C.BC}=\frac{AB}{\sin C}\)
\(\Rightarrow\frac{a}{\sin A}=\frac{c}{\sin C}2\)
Từ 1 và 2, ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
\(\RightarrowĐPCM\)
Ta có:
\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
a) Kẻ \(CE\perp AB\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}CE.AB\left(1\right)\)
Xét \(\Delta ACE\)có \(\sin A=\frac{EC}{AC}\)
\(\Rightarrow\frac{1}{2}AB.AC.\sin A=\frac{1}{2}AB.AC.\frac{EC}{AC}=\frac{1}{2}AB.EC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\left(đpcm\right)\)
b) Kẻ \(BD\perp AC\)
Xét \(\Delta ADB\)có \(\sin A=\frac{BD}{AB}\)
\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC.AB}{BD}\left(3\right)\)
Lại có : \(\sin A=\frac{EC}{AC}\)( câu a )
\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA.BC}{EC}\left(4\right)\)
Xét \(\Delta BEC\)có \(\sin B=\frac{EC}{BC}\)
\(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA.BC}{EC}\left(5\right)\)
Xét \(\Delta BDC\)có \(\sin C=\frac{DB}{BC}\)
\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{DB}{BC}=\frac{AB.BC}{DB}\left(6\right)\)
Từ (3) ; (4) ; (5) và (6) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)
c) Xét \(\Delta ABD\)có \(\cos A=\frac{AD}{AB}\)
Áp dụng định lí Py-ta-go cho \(\Delta ABD\)vuông tại D ta được :
\(AB^2=BD^2+AD^2\)
Áp dụng định lí Py-ta-go cho \(\Delta BDC\)vuông tại D ta được :
\(BD^2+DC^2=BC^2\)
Ta có : \(b^2+c^2-2bc.\cos A\)
\(=AB^2+AC^2-2AB.AC.\cos A\)
\(=BD^2+AD^2+AC^2-2AB.AC.\frac{AD}{AB}\)
\(=BD^2+\left(AC^2-2AD.AC+AD^2\right)\)
\(=BD^2+\left(AC-AD\right)^2\)
\(=BD^2+DC^2\)
\(=BC^2=a\left(đpcm\right)\)