K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

a) \(4x^2-4x+1=\left(2x-1\right)^2\)

14 tháng 7 2019

\(3x\left(x-5\right)-x\left(4+3x\right)=43\)

\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)

\(\Leftrightarrow-19x=43\)

\(\Leftrightarrow x=\frac{-43}{19}\)

1A. Phân tích các đa thức sau thành nhân tử:a) x3+2x;                                           b) 3x - 6y;c) 5(x + 3y)- 15x(x + 3y);               d) 3(x-y)- 5x(y-x).1B. Phân tích các đa thức sau thành nhân tử:a) 4x2 - 6x;                                         b) x3y - 2x2y2 + 5xy; c) 2x2(x +1) + 4x(x +1);               d) 2 x(y - 1) - 2 y(1 - y). 5                  52A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);b) x(y - x)3 - y(x - y)2 + xy(x -...
Đọc tiếp

1A. Phân tích các đa thức sau thành nhân tử:

a) x3+2x;                                           b) 3x - 6y;

c) 5(x + 3y)- 15x(x + 3y);               d) 3(x-y)- 5x(y-x).

1B. Phân tích các đa thức sau thành nhân tử:

a) 4x2 - 6x;                                         b) x3y - 2x2y2 + 5xy;

 

c) 2x2(x +1) + 4x(x +1);               d) 2 x(y - 1) - 2

 

y(1 - y).

 

5                  5

2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);

b) x(y - x)3 - y(x - y)2 + xy(x - y);

c) xy(x + y)- 2x - 2y;

d) x(x + y)2 - y(x + y)2 + y2 (x - y).

2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;

b) x(x- y)3 - y(y - x)2 - y2(x - y);

c) x2y-xy2 - 3x + 3y;

d) x(x + y)2 - y(x + y) 2 + xy - x 2 .

3

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

27 tháng 9 2023

a) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

b) \(x^2-3y^2\)

\(=x^2-\left(y\sqrt{3}\right)^2\)

\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)

\(=0\cdot0\)

\(=0\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)

\(=\left(x-5y\right)\left(5x-y\right)\)

e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)

\(=\left(2x-1\right)^2-\left(x+1\right)^2\)

\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)

\(=3x\left(x-2\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

g) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(0,1\right)^3\)

\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

27 tháng 9 2023

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

\(=\left(5x-5y\right)\left(x+y\right)\)

\(=5\left(x+y\right)\left(x-y\right)\)

27 tháng 8 2021

l/ $6x^2(x-1)-9x(x-1)\\=(6x^2-9)(x-1)\\=3(2x^2-3)(x-1)\\=3(\sqrt2 x-\sqrt 3)(\sqrt 2 x+\sqrt 3)(x-1)$

m/ $4x^2(x-2)+9x(2-x)\\=4x^2(x-2)-9x(x-2)\\=(4x^2-9x)(x-2)\\=x(4x-9)(x-2)$

n/ $4x^2y-4xy+y\\=y(4x^2-4x+1)\\=y(2x-1)^2$

o/ $3x(2x-3y)-6(3y-2x)\\=3x(2x-3y)+6(2x-3y)\\=(3x+6)(2x-3y)\\=3(x+2)(2x-3y)$

p/ $4x^2(x-1)+(1-x)\\=4x^2(x-1)-(x-1)\\=(4x^2-1)(x-1)\\=(2x-1)(2x+1)(x-1)$

27 tháng 8 2021

l)\(6x^2\left(x-1\right)-9x\left(x-1\right)=3x\left(x-1\right)\left(2x-3\right)\)

m) \(4x^2\left(x-2\right)+9x\left(2-x\right)=4x^2\left(x-2\right)-9x\left(x-2\right)=x\left(x-2\right)\left(4x-9\right)\)

n) \(4x^2y-4xy+y=y\left(4x^2-4x+1\right)=y\left(2x-1\right)^2\)

o) \(3x\left(2x-3y\right)-6\left(3y-2x\right)=3x\left(2x-3y\right)+6\left(2x-3y\right)=3\left(2x-3y\right)\left(x+2\right)\)

p) \(4x^2\left(x-1\right)+\left(1-x\right)=4x^2\left(x-1\right)-\left(x-1\right)=\left(4x^2-1\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\left(x-1\right)\)

13 tháng 7 2018

a) Biến đổi x 3   =   x 2 .x, phân tích thành x( x 2  + 2).

b) Tương tự a) phân tích thành 3(x – 2y).

c) Nhân tử chung 5(x + 3y) phân tích thành 5(x + 3y)(1 – 3x).

d) Thực hiện biến đổi y – x = -(x – y), xuất hiện nhân tử chung là (x – y), phân tích thành (x – y)(3 + 5x).

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

14 tháng 11 2021

\(a,=3xy\left(x-2y\right)\\ b,=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x+y+3\right)\left(x-y\right)\\ c,=x\left[\left(x+2\right)^2-y^2\right]=x\left(x+y+2\right)\left(x-y+2\right)\\ d,\Leftrightarrow x\left(x^2-4\right)=0\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

15 tháng 6 2021

bài 1:

a) x(x-2)-5y-(x-2)=(x-5y)(x-2)

b) =(2x-3-4x)(2x-3+4x)=(-2x-3)(6x-3)

bài 2 bạn tự luyện nhé

3 tháng 9 2021

????

27 tháng 8 2023

a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)

\(=\left(2x+y\right).3y\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)

\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)

c) \(9x^2-3x+2y-4y^2\)

\(=9x^2-4y^2-3x+2y\)

\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left[3x+2y-1\right]\)

d) \(4x^2-4xy+2x-y+y^2\)

\(=4x^2-4xy+y^2+2x-y\)

\(=\left(2x-y\right)^2+2x-y\)

\(=\left(2x-y\right)\left(2x-y+1\right)\)

e) \(x^3+3x^2+3x+1-y^3\)

\(=\left(x+1\right)^3-y^3\)

\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)

g) \(x^3-2x^2y+xy^2-4x\)

\(=x\left(x^2-2xy+y^2\right)-4x\)

\(=x\left(x-y\right)^2-4x\)

\(=x\left[\left(x-y\right)^2-4\right]\)

\(=x\left(x-y+2\right)\left(x-y-2\right)\)

27 tháng 8 2023

a) (x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

b) (x + 1)³ + (x - 1)³

= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]

= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)

= 2x(x² + 3)

c) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) x³ + 3x² + 3x + 1 - y³

= (x³ + 3x² + 3x + 1) - y³

= (x + 1)³ - y³

= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]

= (x - y + 1)(x² + 2x + 1 + xy + y + y²)

g) x³ - 2x²y + xy² - 4x

= x(x² - 2xy + y² - 4)

= x[(x² - 2xy + y²) - 4]

= x[(x - y)² - 2²]

= x(x - y - 2)(x - y + 2)