(1/1.2+1/2.3+1/3.4+....+1/8.9+1/9.10).100-[5/2:(x+206/100)]:1/2=89
tìm x hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)
\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow x+\dfrac{103}{50}=5\)
hay \(x=\dfrac{147}{50}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}=\frac{9}{10}\)
\(\Rightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\Rightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)
\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}:1=5\)
\(\Rightarrow x=5-\frac{206}{100}=\frac{147}{50}\)
Vậy \(x=\frac{147}{50}.\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)
\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)
\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)
\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)
\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)
\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)
\(\Leftrightarrow x+\frac{103}{50}=5\)
\(\Leftrightarrow x=5-\frac{103}{50}\)
\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)
\(\Leftrightarrow x=\frac{147}{50}\)
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(100-10\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=1.2=2\)
\(\Rightarrow\left(x+\dfrac{206}{100}\right)=\dfrac{5}{2}:2=\dfrac{5}{2}.\dfrac{1}{2}=\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{5}{4}-\dfrac{206}{100}=\dfrac{125}{100}-\dfrac{206}{100}\)
\(\Rightarrow x=-\dfrac{81}{100}\)
a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)
\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)
\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)
\(x=\dfrac{-9198}{4400}\)
a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)
\(x+\dfrac{206}{100}=5\)
\(x=5-\dfrac{206}{100}\)
\(x=\dfrac{147}{50}\)
Vậy \(x=\dfrac{147}{50}\)
giúp mk nha. mk sẽ k cho bn nào trả lời giúp mk mà đúng
(1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10)*100-[5/2:(x+206/100)]:1/2=89
Đặt A=1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10
A=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9+1/9-1/10
A=1-1/10
A=9/10
=>(1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10)*100-[5/2:(x+206/100)]:1/2=89
=9/10*100-[5/2:(x+206/100)]:1/2=89
90-[5/2:(x+206/100)]:1/2=89
5/2:(x+206/100):1/2=90-89
5/2:(x+206/100):1/2=1
x+206/100:1/2=5/2:1
x+206/100:1/2=5/2
x+103/25=5/2
x=5/2-103/25
x=-81/50
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)
Vậy \(X=\frac{147}{50}\)
( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2
( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2
90 - 5/2 : ( x + 103/50 ) = 89/2
5/2 : ( x + 103/50 ) = 90 - 89/2
5/2 : ( x + 103/50 ) = 91/2
x + 103/50 = 5/2 : 91/2
x + 103/50 = 5/91
x = 5/91 - 103/50
x = -9,123/4550
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\Rightarrow x+\frac{266}{100}=5\Rightarrow x=\frac{117}{50}\)
Vậy x = 117/50
Ta có:
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right).100\\ =\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100\)
\(=\left(1-\frac{1}{10}\right).100\)
\(=\frac{9}{10}.100\)
= 90
Khi đó đề bài sẽ thành : \(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\Rightarrow\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\Rightarrow\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\)
\(\Rightarrow x+\frac{266}{100}=5\)
\(\Rightarrow x=\frac{117}{50}\)
Vậy \(x=\frac{117}{50}\)