Cho x > y > z, Chứng minh rằng biểu thức:
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)luôn luôn dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x > y > z
CMR : \(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\) luôn luôn dương
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)
\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)
\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)
\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)
Vì \(x>y>z\Rightarrow A>0\)
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=x^4y-x^4z+y^4z-y^4x+z^4\left(x-y\right)\)
\(=xy\left(x^3-y^3\right)-z\left(x^4-y^4\right)+z^4\left(x-y\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)-z\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)+z^4\left(x-y\right)\)
\(=\left(x-y\right)\left[xy\left(x^2+xy+y^2\right)-z\left(x^3+x^2y+xy^2+y^3\right)+z^4\right]\)
\(=\left(x-y\right)\left(x^3y+x^2y^2+xy^3-x^3z-x^2yz-xy^2z-y^3z+z^4\right)\)
\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y^3-z^3\right)\right]\)
\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y-z\right)\left(y^2+yz+z^2\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left[x^3+x^2y+xy^2-z\left(y^2+yz+z^2\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x^3+x^2y+xy^2-y^2z-yz^2-z^3\right)\)
\(=\left(x-y\right)\left(y-z\right)\left[x^3-z^3+y\left(x^2-z^2\right)+y^2\left(x-z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x^2+xz+z^2\right)+y\left(x-z\right)\left(x+z\right)+y^2\left(x-z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[x^2+xz+z^2+y\left(x+z\right)+y^2\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{2\left(x^2+xz+z^2+xy+yz+y^2\right)}{2}\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{x^2+2xz+z^2+x^2+xy+y^2+y^2+yz+z^2}{2}\)
\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{\left(x+z\right)^2+\left(x+y\right)^2+\left(y+z\right)^2}{2}\)
\(Ta\)\(có\)\(x>y>z\Rightarrow\left(x-y\right);\left(y-z\right);\left(x-z\right)>0\)
\(\left(x+z\right)^2;\left(y+z\right)^2;\left(x+y\right)^2\ge0\)
\(\Rightarrow A>o\Rightarrow A\)\(luôn\)\(dương\)
a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)
\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)
\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)
Bạn có làm đc câu b ko, nếu đc thì làm nốt giùm mink nha
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
mình nghĩ ra cách này ko biết đúng hay sai, nhưng mình sẽ cm cho bạn xem trước cái này để mình đảo lại trong quá trình làm bài luôn cho đỡ mất thời gian
\(\dfrac{1}{x-y}-\dfrac{1}{x-z}=\dfrac{x-z-x+y}{\left(x-y\right)\left(x-z\right)}=\dfrac{\left(y-z\right)}{\left(x-y\right)\left(x-z\right)}\)
thế nên sẽ đảo ngược lại trong bài này, vây ta sẽ có
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{1}{x-y}-\dfrac{1}{x-z}\\ \dfrac{z-x}{\left(y-z\right)\left(x-y\right)}=\dfrac{1}{y-z}-\dfrac{1}{x-y}\\ \dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{1}{z-x}-\dfrac{1}{y-z}\)
thay vào đề bài ta được
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}\\ =\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{y-x}\\ =\dfrac{1}{x-y}+\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{y-z}+\dfrac{1}{z-x}+\dfrac{1}{z-x}\\ =\dfrac{2}{x-y}+\dfrac{2}{y-x}+\dfrac{2}{z-x}\left(đpcm\right)\)
vậy ...
mình nghĩ ra thì là như z, chúc may mắn :)
Câu hỏi của Trần Thùy Dung - Toán lớp 8 - Học toán với OnlineMath
Vào tham khảo nha !
Không hiển thị màu xanh thì bạn nhấn vào câu hỏi tương tự ý !
Lick :
https://olm.vn/hoi-dap/detail/54197989738.html
Cố mà đánh nha !