1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L, K thẳng...
Đọc tiếp
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
a) Do A'M và BC cắt nhau tại trung điểm K của mỗi đường nên tứ giác A'BMC là hình bình hành
\(\Rightarrow MC//A'B;MC=A'B\). (1)
Tương tự ta có \(MC//AB';MC=AB'\). (2)
Từ (1) và (2) suy ra \(AB'//A'B;A'B=AB'\)
\(\Rightarrow\) Tứ giác AB'A'B là hình bình hành
\(\Rightarrow\) AA' và BB' cắt nhau tại trung điểm của mỗi đường.
Tương tự, BB' và CC' cắt nhau tại trung điểm của mỗi đường.
Vậy AA', BB', CC' đồng quy.
b) Gọi G là giao điểm của AK và MN.
\(\Delta AMA'\) có: \(\left\{{}\begin{matrix}KA'=KM\\NA=NA'\\G\in AK\cap MN\end{matrix}\right.\)
\(\Rightarrow\) G là trọng tâm của tam giác AMA'
\(\Rightarrow AG=\frac{2}{3}AK\).
\(\Delta ABC\) có: \(\left\{{}\begin{matrix}KB=KC\\G\in AK\\AG=\frac{2}{3}AK\end{matrix}\right.\)
\(\Rightarrow\) G là trọng tâm của tam giác ABC.
Vậy MN luôn đi qua trọng tâm G của tam giác ABC.