K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

30 tháng 12 2019

18 tháng 8 2018

Chọn D.

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

Đặt $x^2+2x=t$ thì $t=(x+1)^2-1\geq -1$

PT ban đầu trở thành: $t^2-4mt+3m+1=0(*)$

Ta cần tìm $m$ để $(*)$ có nghiệm $t\geq -1$

Điều này xảy ra khi:

\(\left\{\begin{matrix} \Delta'=4m^2-3m-1\geq 0\\ t_1+t_2\geq -2\\ (t_1+1)(t_2+1)\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-1)(4m+1)\geq 0\\ 4m\geq -2\\ t_1t_2+(t_1+t_2)+1=3m+1+4m+1\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq 1 \text{ hoặc } m\leq \frac{-1}{4}\\ m\geq \frac{-1}{2}\\ m\geq \frac{-2}{7}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\geq 1\\ \frac{-2}{7}\leq m\leq \frac{-1}{4}\end{matrix}\right.\)

21 tháng 3 2021

a, Với m=1 thay vào pt 

Ta có

\(x^2+x-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

b, 

Thay x=2 vào pt

ta có

\(4-2-3m+2=0\)

\(\Leftrightarrow4-3m=0\)

\(\Rightarrow m=\dfrac{4}{3}\)

c, Ta có

\(\Delta=1-4\left(-3m+2\right)\)

\(=12m-7\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow12m-7>0\)

\(\Rightarrow m>\dfrac{7}{12}\)

d, 

Để ptcos nghiệm kép thì \(\Delta=0\)

\(\Rightarrow12m-7=0\)

\(\Rightarrow m=\dfrac{7}{12}\)

e, 

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Rightarrow m< \dfrac{7}{12}\)

NV
21 tháng 8 2021

\(\Leftrightarrow\dfrac{m}{2}\left(1-cos4x\right)-\dfrac{3}{2}sin4x+\dfrac{1+cos4x}{2}=2\)

\(\Leftrightarrow\left(1-m\right)cos4x-3sin4x=3-m\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt đã cho có nghiệm khi:

\(\left(1-m\right)^2+\left(-3\right)^2\ge\left(3-m\right)^2\)

\(\Leftrightarrow4m+1\ge0\Leftrightarrow m\ge-\dfrac{1}{4}\)