Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=sinx\).
Do \(x\in\left(0,\frac{\pi}{2}\right)\)nên \(t\in\left(0,1\right)\).
\(P=\frac{2}{1-t}+\frac{1}{t}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-t+t}=3+2\sqrt{2}\)
Dấu \(=\)khi \(\frac{\sqrt{2}}{1-t}=\frac{1}{t}\Leftrightarrow t=\sqrt{2}-1\)
a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0
b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0
c) sinx - cosx = sinx - sin(90-x)
Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0
Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0
d) Tương tự câu c)
Ta có: với 0 ° < α < 90 ° thì sinx < 1, suy ra sinx – 1 < 0
Ta có: *nếu x = 45 ° thì sinx = cosx, suy ra: sinx – cosx = 0
*nếu x < 45 ° thì cosx = sin( 90 ° – x)
Vì x < 45 ° nên 90 ° – x > 45 ° , suy ra: sinx < sin( 90 ° – x)
Vậy sinx – cosx < 0
*nếu x > 45 ° thì cosx = sin( 90 ° – x)
Vì x > 45 ° nên 90 ° – x < 45 ° , suy ra: sinx > sin( 90 ° – x)
Vậy sinx – cosx > 0.
1.
\(sin^2x+cos^2x=1\Rightarrow\left(\dfrac{1}{4}\right)^2+cos^2x=1\)
\(\Rightarrow cos^2x=\dfrac{15}{16}\Rightarrow cosx=\dfrac{\sqrt{15}}{4}\)
2.
\(tanx=\dfrac{1}{3}\Rightarrow tan^2x=\dfrac{1}{9}\Rightarrow\dfrac{sin^2x}{cos^2x}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{sin^2x}{1-sin^2x}=\dfrac{1}{9}\Rightarrow9sin^2x=1-sin^2x\)
\(\Rightarrow sin^2x=\dfrac{1}{10}\Rightarrow sinx=\dfrac{\sqrt{10}}{10}\)
\(sinx-cos\left(\pi-x\right)=-\frac{1}{2}\)
\(\Leftrightarrow sinx+cosx=-\frac{1}{2}\)
\(\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\)
\(\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)
\(\Rightarrow1+2sinx.cosx=\frac{1}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)
\(T=\frac{1}{sinx}+\frac{1}{cosx}=\frac{sinx+cosx}{sinx.cosx}=\frac{-\frac{1}{4}}{-\frac{3}{8}}=\frac{2}{3}\)
xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html