K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:
BĐT đã cho tương đương với:

\(\frac{a}{b}-\frac{b}{a}+\frac{b}{c}-\frac{c}{b}+\frac{c}{a}-\frac{a}{c}\geq 0\)

\(\Leftrightarrow \frac{a^2-b^2}{ab}+\frac{b^2-c^2}{bc}+\frac{c^2-a^2}{ca}\geq 0\)

\(\Leftrightarrow \frac{a^2-b^2}{ab}-\frac{(a^2-b^2)+(c^2-a^2)}{bc}+\frac{c^2-a^2}{ca}\geq 0\)

\(\Leftrightarrow (a^2-b^2)\left(\frac{1}{ab}-\frac{1}{bc}\right)+(c^2-a^2)\left(\frac{1}{ca}-\frac{1}{bc}\right)\geq 0\)

\(\Leftrightarrow (a^2-b^2)(c-a)+(c^2-a^2)(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(a+b)(c-a)-(c-a)(c+a)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)\geq 0\) (luôn đúng với mọi $0< a\leq b\leq c$)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $b=c$ hoặc $c=a$

AH
Akai Haruma
Giáo viên
22 tháng 8 2019

Lời giải:

Xét hiệu:

\(\frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{a}{b}\right)=\frac{ba+c^2}{ac}-\frac{b^2+a^2}{ab}=\frac{b^2a+c^2b}{abc}-\frac{b^2c+a^2c}{abc}\)

\(=\frac{ab^2+bc^2-b^2c-a^2c}{abc}\geq \frac{a^2b+bc^2-b^2c-a^2c}{abc}=\frac{a^2(b-c)-bc(b-c)}{abc}=\frac{(a^2-bc)(b-c)}{abc}\)

Vì $0< a\leq b\leq c\Rightarrow a^2-bc\leq 0; b-c\leq 0$

$\Rightarrow \frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{a}{b}\right)\geq 0$

$\Rightarrow \frac{b}{c}+\frac{c}{a}\geq \frac{b}{a}+\frac{a}{b}$ (đpcm)

13 tháng 5 2021

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

6 tháng 8 2019

Trần Thanh Phương

6 tháng 8 2019

Hùng Nguyễn giờ đói hoa mắt rồi @@ đi ăn cơm :D

7 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Thị Ngọc Thơ, @tth_new

help me! cần gấp lắm ạ!

thanks nhiều!

21 tháng 4 2019

1)  \(xy\le\frac{\left(x+y\right)^2}{4}\)(cô si) ÁP DỤNG BẤT ĐẲNG THỨC TRÊN với a, b,c>0 TA CÓ

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}+\frac{\left(b+c\right)^2}{4\left(b+c\right)}+\frac{\left(c+a\right)^2}{4\left(c+a\right)}.\)

                                                      \(=\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}.\)

2) Với a,b,c >0 .XÉT \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\)(bất đẳng thức cô si)

                                    \(\frac{b^2}{c}+c\ge2\sqrt{\frac{b^2}{c}.c}=2b\)

                                    \(\frac{c^2}{a}+a\ge2\sqrt{\frac{c^2}{a}.a}=2c\)

\(\Rightarrow\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)

(đpcm)

21 tháng 4 2019

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{ab}{2\sqrt{ab}}+\frac{bc}{2\sqrt{bc}}+\frac{ca}{2\sqrt{ca}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{a+b+c}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)