K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

"2 k" ??

11 tháng 10 2021

1/1 không bằng 2 bạn ơi

 

NV
12 tháng 12 2021

Quy tắc \(a^b.a^c=a^{b+c}\)

\(2^{k+1}=2^k.2^1=2^k.2\)

15 tháng 12 2023

Bài 2:

a: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1+x}{x+1}-\dfrac{x-1}{x^2+x}\)

\(=\dfrac{x\left(x+1\right)-x+1}{x\left(x+1\right)}\)

\(=\dfrac{x^2+x-x+1}{x^2+x}=\dfrac{x^2+1}{x^2+x}\)

b: ĐKXĐ: \(x\notin\left\{-23;1\right\}\)

\(\dfrac{2x}{x+23}\cdot\dfrac{3x}{x-1}+\dfrac{2x}{x+23}\cdot\dfrac{23-2x}{x-1}\)

\(=\dfrac{2x}{x+23}\cdot\left(\dfrac{3x}{x-1}+\dfrac{23-2x}{x-1}\right)\)

\(=\dfrac{2x}{x+23}\cdot\dfrac{3x+23-2x}{x-1}\)

\(=\dfrac{2x}{x+23}\cdot\dfrac{x+23}{x-1}=\dfrac{2x}{x-1}\)

Bài 3:

a: Sửa đề: AMCN

Ta có: ABCD là hình bình hành

=>BC=AD(1)

Ta có: M là trung điểm của BC

=>\(BM=MC=\dfrac{BC}{2}\left(2\right)\)

Ta có: N là trung điểm của AD

=>\(NA=ND=\dfrac{AD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra BM=MC=NA=ND

Xét tứ giác AMCN có

MC//AN

MC=AN

Do đó: AMCN là hình bình hành

b: Xét tứ giác ABMN có

BM//AN

BM=AN

Do đó: ABMN là hình bình hành

Hình bình hành ABMN có \(AB=BM\left(=\dfrac{BC}{2}\right)\)

nên ABMN là hình thoi

c: Ta có: BM//AD

=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)

=>\(\widehat{EBM}=60^0\)

Xét ΔBEM có BE=BM(=BA) và \(\widehat{EBM}=60^0\)

nên ΔBEM đều

=>\(\widehat{BEM}=60^0\)

Xét hình thang ANME có \(\widehat{MEA}=\widehat{EAN}=60^0\)

nên ANME là hình thang cân

=>AM=NE

21 tháng 4 2018

a) Xét \(\Delta ABC\)\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\) MN//BC (định lí Ta-lét đảo)

b) Xét \(\Delta AIB\) có MK // BI ( vì MN // BC)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MK}{BI}\) ( hệ quả của định lí Ta-lét)

C/m tương tự, ta có: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{MK}{BI}=\dfrac{KN}{IC}\)

\(BI=IC\Rightarrow MK=KN\)

\(\Rightarrow\) K là trung điểm của MN

\(\)

23 tháng 4 2018

Cảm ơn bạn nhiều

22 tháng 9 2017

Kẻ tia Ay sao cho \(\widehat{yAD}=15^0\). Tia Ay cắt DC tại E.

Kẻ \(AF\perp DC\left(F\in DC\right)\)

\(\Delta EAD=\Delta IAB\left(g-c-g\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AD=AB\\AE=AI\end{matrix}\right.\) (1)

\(\widehat{EAI}=\widehat{DAB}-\widehat{DAE}-\widehat{IAB}=120^0-15^0-15^0=90^0\)

\(\Rightarrow\dfrac{1}{AE^2}+\dfrac{1}{AK^2}=\dfrac{1}{AF^2}\) (h.t.l. trong \(\Delta AEK\) vuông tại A) (2)

\(\widehat{DAC}+\widehat{DAB}=180^0\) (trong cùng phía, AB // CD)

\(\Rightarrow\widehat{DAC}=60^0\)

\(\Rightarrow\Delta ADC\) đều (AD = DC) có AF là đ.c.

\(\Rightarrow AF=\dfrac{\sqrt{3}}{2}AD\)

\(\Rightarrow\dfrac{1}{AF^2}=\dfrac{4}{3AD^2}\) (3)

(1), (2) và (3) \(\Rightarrow\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\left(\text{đ}pcm\right)\)

Hình tự vẽ >o<

23 tháng 6 2021

a) đk: \(a>0;a\ne1\)

b) Xét K = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)

\(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

Xét \(a=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)

<=> \(\sqrt{a}=1+\sqrt{2}\)

<=> K = \(\dfrac{\left(\sqrt{2}+2\right)\sqrt{2}}{\sqrt{2}+1}=2\)

c) Đẻ K < 0

<=> \(\dfrac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}>0\)

<=> a < 1

<=> 0 < a < 1

23 tháng 6 2021

thank you!