So sánh
a,5^299 và 3^501
b,A=2011^2010+1/2011^2011 và B=2011^2011+1/2011^2012+1
.............GIÚP MÌNH VỚI MN............
THANK GIÓ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:2012/2010=1+1/2011+1/2012 (1)
Thay (1) vào A, ta có:
2010/2011+2011/2012+1+1/2011+1/2012
= (2010/2011+1/2011) + 1+ (2011/2012+1/2012)
=1+1+1=3=51/17
suy ra A>51/17
Ta có B=1/3+1/4+...+1/17(có 15 sh)
B=(1/17+1/3).15:2
B=50/17(2)
Từ (1) và (2)=>A>B
Đặt \(A=\frac{2011^{2010}+1}{2011^{2011}+1}\Rightarrow2011A=\frac{2011^{2011}+2011}{2011^{2011}+1}=1+\frac{2010}{2011^{2011}+1}\)
\(B=\frac{2011^{2011}+1}{2011^{2012}+1}\Rightarrow2011B=\frac{2011^{2012}+2011}{2011^{2012}+1}=1+\frac{2010}{2011^{2012}+1}\)
\(2011^{2011}+1< 2011^{2012}+1\)
\(\Rightarrow\frac{2010}{2011^{2011}+1}>\frac{2010}{2011^{2012}+1}\)
\(\Rightarrow2011A>2011B\Rightarrow A>B\)
\(\Rightarrow\frac{2011^{2010}+1}{2011^{2011}+1}>\frac{2011^{2011}+1}{2011^{2012}+1}\)
Vì 20112011<20112012 =>20112011 +1<20112012 +1
=> 20112011+1/20112012+1 <1
=>B<1
=>B=20112011+1/20112012+1<20112011+1+2010/20112012+1+2010
=>B<20112011+2011/20112012+2011=20112010.2011+2011/20112011.2011+2011=2011.(20112010+1)/2011.(20112011+1)
=>B<20112010+1/20112011+1=A
=>B<A
Vậy B<A
5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299