Áp dụng bất đẳng thức cauchy . Tìm GTLN
A = (3 + x)(5 - y) với 3 < x < 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)
\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
Đề sai, cho đk x mà ko có đk y sao áp dụng cauchy bây giờ:v