\(B = -{5 \over \sqrt{x}-1}\) Tìm x\(\inℤ\)để B \(\inℤ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)
mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)
b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)
mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)
c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
ĐKXĐ: x \(\ge\)0; x \(\ne\)1
a) P = \(\left(\frac{2}{\sqrt{x}-1}-\frac{5}{x+\sqrt{x}-2}\right):\left(1+\frac{3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)
P = \(\left(\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{5}{x+2\sqrt{x}-\sqrt{x}-2}\right):\frac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
P = \(\frac{2\sqrt{x}+4-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\)
P = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
b) P = \(\frac{1}{\sqrt{x}}\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}}\)
=> \(\sqrt{x}\left(2\sqrt{x}+1\right)-\sqrt{x}-1=0\)
<=> \(2x+\sqrt{x}-\sqrt{x}-1=0\)
<=> \(x=\frac{1}{2}\)(tm)
c)Với đk: x \(\ge\)0 và x \(\ne\)1
\(x-2\sqrt{x-1}=0\) (đk: \(x\ge1\))
<=> \(x-1-2\sqrt{x-1}+1=0\)
<=> \(\left(\sqrt{x-1}-1\right)^2=0\)
<=> \(\sqrt{x-1}-1=0\)
<=> \(\sqrt{x-1}=1\)
<=> \(\left(\sqrt{x-1}\right)^2=1\)
<=> \(\left|x-1\right|=1\)
<=> \(\orbr{\begin{cases}x=0\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Với x = 2 => P = \(\frac{2\sqrt{2}+1}{\sqrt{2}+1}=\frac{\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{4-2\sqrt{2}+\sqrt{2}-1}{2-1}=3-\sqrt{2}\)
a) P = \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)(sửa lại)
b) \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}}\) => \(2x-\sqrt{x}-\sqrt{x}-1=0\)
<=> \(2x-2\sqrt{x}-1=0\)<=> \(2\left(x-\sqrt{x}+\frac{1}{4}\right)-\frac{3}{4}=0\)
<=> \(2\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{3}{4}\) <=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{3}{8}\)....(tiếp tự lm)
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !