K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

anh ấy thật đẹp trai

\(A=\left(x-\dfrac{1}{5}\right)^2+\dfrac{11}{12}\ge\dfrac{11}{12}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{5}\)

7 tháng 3 2016

Áp dụng BĐT : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được:

P=-|3x-18|-|3x+7|=-|18-3x|-|3x+7|=-(|18-3x|+|3x+7|)\(\le\)-25

Dấu "=" xảy ra khi: (18-3x)(3x+7)\(\ge\)0

Giải cái đó ra bạn sẽ được: -7/3 \(\le x\le\)6

Mà x nguyên nên: x={-2;-1;0;1;2;3;4;5;6} có 9 phần tử

Vậy chọn C

6 tháng 3 2016

Áp dụng \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) (dấu = xảy ra khi a,b > 0), ta có :

\(P=-\left|3x-18\right|-\left|3x+7\right|=-\left|3x-18\right|-\left|7+3x\right|\le-\left|\left(3x-18\right)-\left(7+3x\right)\right|\)

\(=-\left|3x-18-7-3x\right|=-\left|-18-7\right|=-25\)

GTLN của P là -25 <=> 3x - 18 > 0 và  3x + 7 > 0

<=> 3x > 18 và 3x > -7 => x > 6 

Vậy có vô số giá trị của x thỏa mãn P có GTLN với điều kiện x > 6 và x là số nguyên

6 tháng 8 2017

A= m2-m+1= m2-2m.1/2 +(1/2)2-(1/2)2 +1=(m-1/2)2 +5/4 lớn hơn hoặc = 5/4

do đó A nhỏ nhất khi bằng 5/4

=> (m-1/2)2+5/4 = 5/4

=>(m-1/2)2=0

=>m-1/2=0 

=> m=1/2

nếu đúng thì k cho mình nka

6 tháng 8 2017

cảm ơn nha

8 tháng 2 2018

Đặt A = x^2/x^4+1

2A = 2x^2/x^4+1

1 - 2A = x^4+1-2x^2/x^4+1 = x^4-2x^2+1/x^4+1 = (x^2-1)^2/x^4+1 > = 0

=> 2A < = 1 - 0 = 1

=> A < = 1:2 = 1/2

Dấu "=" xảy ra <=> x^2-1=0 <=> x=-1 hoặc x=1

Vậy GTLN của A = 1/2 <=> x=-1 hoặc x=1

Tk mk nha

Bài 2: 

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

f: Ta có: \(x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=2

e: Ta có: \(3x^2-6x+1\)

\(=3\left(x^2-2x+\dfrac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\dfrac{2}{3}\right)\)

\(=3\left(x-1\right)^2-2\ge-2\forall x\)

Dấu '=' xảy ra khi x=1

Bài 1: 

a: Ta có: \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

b: Ta có: \(x^3-3x+2=0\)

\(\Leftrightarrow x^3-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

11 tháng 9 2021

54 + 34 = 88

A. 34 + 67= 101

B. 67 + 23 = 90

11 tháng 9 2021

54+34=88

34+67=101

67+23=90

21 tháng 5 2021

\(x+y=1\Rightarrow x=1-y\) 

\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+\left(1-y\right)y\)

\(=y^2-y+1\)\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

=>minC=\(\dfrac{3}{4}\) \(\Leftrightarrow y=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{2}\)

Ta có :

\(x+y=1\Rightarrow\left(x+y\right)^2=1\)

\(\Leftrightarrow x^2+2xy+y^2=1\)

\(\Leftrightarrow x^2+xy+y^2=1-xy\ge1-\left(\dfrac{x+y}{2}\right)^2=1-\dfrac{1}{4}=\dfrac{3}{4}\)

Hay \(C \ge \dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)