K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

11 tháng 6 2021

2018^4n * 2019^4n *2020^ 4n

=(...8.^4)^n* (....9.^4)^n *(...0^4)^n

=...6^n* .....1^n* ...0^n

=....6 *...1 *...0( vì số tận cùng = 6,1,0 khi nâng lên bất kì lũy thừa nào thì cũng cho ta tận cùng =6 ,1,0)

= ...0 

mà số có tận cùng =0 thì là số chính phương vậy ko có n thỏa mãn

mình ko chắc có đúng ko nữa

xin lỗi + ko phải nhân

13 tháng 11 2019

Hỏi đáp Toán

20 tháng 5 2016

Đề bài sai rồi bạn, phải là n thuộc N sao vi nếu n=0 thì A=20124.0+20134.0+20144.0+20154.0=20120+20130+20140+20150=1+1+1+1=4=22, là số chính phương, vô lí

20 tháng 5 2016

Nếu n\(\in\)N thì có thể xảy ra trường hợp n = 0.

Nếu n = 0 => A = 20124 . 0 + 20134 . 0  20144 . 0  20154 . 0

=> A = 2012+ 2013 2014 2015= 1 + 1 + 1 + 1 = 4 => A là số chính phương

==>> Đề sai ( phải sửa là n\(\in\)N* )

27 tháng 9 2017

Ta có \(2012^{4n}\)tận cùng 6

\(2013^{4n}\)tận cùng1

\(2014^{4n}\)tận cùng 6

\(2015^{4n}\)tận cùng 5

\(\Rightarrow2012^{4n}+2013^{4n}+2014^{4n}+2015^{4n}\)tận cùng 8

Mà ko có số chính phương nào tận cùng 8

\(\Rightarrow2012^{4n}+2013^{4n}+2014^{4n}+2015^{4n}\)không phải số chính phương

27 tháng 9 2017

Đề có sai ko you? Phải là n \(\in\)N* vì nếu \(n=0\)thì

\(2012^{4.0}+2013^{4.0}+2014^{4.0}+2015^{4.5}=2012^0+2013^0+2014^0+2015^0=1+1+1+1=2^2\)là số chính phương. Vô lý

P/s: Có gì thì gửi tin nhắn cho mk, mk sẽ giải chi tiết hơn nhé