K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

Ta có:121980=(124)495=20736495=\(\overline{...6}\)

          2100=(24)25=1625=\(\overline{..6}\)

\(\Rightarrow\)\(\left(\overline{...6}\right)\)-\(\left(\overline{...6}\right)\)=\(\overline{...0}\)\(⋮\)10

\(\Rightarrow\)121980-2100\(⋮\)10

Vậy 121980-2100\(⋮\)10.

4 tháng 11 2019

Ta có 121980 - 2  mũ 100

= 12100  mũ 1980 - 2

= 1210x10  mũ 1980 - 2

= ( 10 + 2 )10x10 mũ 1980 - 2

= ( 1010x10 + 210x10 ) mũ 1980 -2

= ( 10010 + 210x10 ) mũ 1980 - 2

= 10010 mũ 1980 - 2 + 210x10 mũ 1980 - 2

mà 10010 chia hết cho 100 

Vậy 121980-2 mũ 100 chia hết cho 100 (đpcm)

mik thấy hơi sai sai nên xem lại hộ mik nha !!!

chúc bn học tốt

  

20 tháng 12 2023

A = 2+ 2+ 22 + ... + 2100

A = (2+ 21) + (2+ 23) + ...+ ( 299 + 2100)

A = (20 + 21) + 2. (2+ 21) + ... + 299 . ( 20 + 21)

A = (2+ 21) . (20 + 22 + ... + 299)

A = 3 . (2+ 22 + ... + 299)

Vì 3 chia hết cho 3 nên 3 . (20 + 2+ ... + 299) chia hết cho 3.

=> A chia hết cho 3.

23 tháng 12 2021
100 : 2 = 50 nha anh!!!!!
18 tháng 12 2021

Cho xin đáp án lẹ đi

22 tháng 12 2021
Lớp 6 lm j đã học cái này :/
9 tháng 11 2017

CHO BN ??

11 tháng 11 2017

cho 4 nha mn 

14 tháng 10 2023

\(a,A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)...+\left(2^{99}+2^{100}\right)\)

\(=6+2^2\cdot\left(2+2^2\right)+2^4\cdot\left(2+2^2\right)...+2^{98}\cdot\left(2+2^2\right)\)

\(=6+2^2\cdot6+2^4\cdot6...+2^{98}\cdot6\)

\(=6\cdot\left(1+2^2+2^4+...+2^{98}\right)\)

Vì \(6\cdot\left(1+2^2+2^4+...+2^{98}\right)⋮6\)

nên \(A⋮6\)

\(b,A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^3+2^5\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)

\(=10+2\cdot\left(2+2^3\right)+2^2\cdot\left(2+2^3\right)+...+2^{96}\cdot\left(2+2^3\right)+2^{97}\cdot\left(2+2^3\right)\)

\(=10+2\cdot10+2^2\cdot10+...+2^{96}\cdot10+2^{97}\cdot10\)

\(=10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)\)

Vì \(10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)⋮10\)

nên \(A⋮10\)

#\(Toru\)

14 tháng 10 2023

mình không biết làm

DD
14 tháng 12 2021

\(a=2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{99}\right)⋮3\).

12 tháng 10 2023

thanks , em cũng đang cần !

28 tháng 10 2019

Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100

A = (2 + 22) + (23 + 24) + ... + (299 + 2100)

A = 6 + 22(2 + 22) + .... + 298(2 + 22)

A = 6 + 22.6 + ... + 298.6

A = 6.(1 + 22 + ... + 298\(⋮\)6

29 tháng 10 2020

cho 31