Cho hình thang abcd ( ab song song với cd) gọi m ,n,p,q, lần lượt là trung điểm của ab,ac,cd,bd. Chứng minh mnpq là hình bình hành , nếu abcb là hình thang cân thì tứ giác mnpq là hinh gì vì sao
MONG CÁC BN GIÚP MÌNH VỚI NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
Tam giác BCD có :
BN = NC ( gt )
DP = PC ( gt )
\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )
Tam giác ADB có :
AQ = QD ( gt )
AM = MB ( gt )
\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )
Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM
\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )
c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau
MNPQ là hình thoi vì là hình bình hành có hai cạnh kề bằng nhau.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔACD có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔACD
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hbh
(1)
Vì P, Q là trung điểm của CD, DA => PQlà đường trung bình của tam giác ADC
(2)
Từ (1) và (2) => MNPQ là hình bình hành.
Sửa đề: M,N,P,Q lần lượt là trung điểm AB,BC,CD,DA
Vì M,N là trung điểm AB,BC nên MN là đtb tg ABC
Do đó MN//AC và \(MN=\dfrac{1}{2}AC\)
Vì P,Q là trung điểm CD,DA nên PQ là đtb tg ADC
Do đó PQ//AC và \(PQ=\dfrac{1}{2}AC\)
\(\Rightarrow MN=PQ\) và MN//PQ
Do đó MNPQ là hbh
Lại có M,Q là trung điểm AB,AD nên MN là đtb tg ABC
Do đó \(MQ=\dfrac{1}{2}BD\)
Mà ABCD là htc nên \(MQ=\dfrac{1}{2}BD=\dfrac{1}{2}AC=MN\)
Vậy MNPQ là hthoi